Journal of the American Chemical Society
Page 4 of 6
Nadjo, L.; Ramachandran, V.; Dalal, N. S.; Antonova, N. S.; Carbó, J.
U.K. thanks the German Research Council (DFG, KO-2288/26-1),
Jacobs University, and CMST COST Action CM1203
(PoCheMoN) for support. D.T. and M.W. thank the German
Research Council (DFG) for financial support for the X-ray
diffraction setup (INST 1841154-1FUGG). Figures 1 and 2 were
generated by Diamond, Version 3.2 (copyright Crystal Impact
GbR).
J.; Poblet, J. M.; Kortz, U. Polyoxopalladates Encapsulating Yttrium and
Lanthanide Ions, [XIIIPdII12(AsPh)8O32]5− (X=Y, Pr, Nd, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, Lu). Chem. Eur. J. 2010, 16 (30), 9076-9085. (d)
Barsukova-Stuckart, M.; Izarova, N. V.; Barrett, R. A.; Wang, Z.; van
Tol, J.; Kroto, H. W.; Dalal, N. S.; Jiménez-Lozano, P.; Carbó, J. J.;
Poblet, J. M.; von Gernler, M. S.; Drewello, T.; de Oliveira, P.; Keita,
B.; Kortz, U. Polyoxopalladates Encapsulating 8-Coordinated Metal Ions,
[MO8PdII12L8]n− (M = Sc3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Lu3+; L =
PhAsO32–, PhPO32–, SeO32–). Inorg. Chem. 2012, 51 (24), 13214-13228.
(e) Delferro, M.; Graiff, C.; Elviri, L.; Predieri, G. Self-assembly of
polyoxoselenitopalladate nanostars [Pd15(μ3-SeO3)10(μ3-O)10Na]9− and their
supramolecular pairing in the solid state. Dalton Trans. 2010, 39 (19),
4479-4481. (f) Xu, F.; Scullion, R. A.; Yan, J.; Miras, H. N.; Busche,
C.; Scandurra, A.; Pignataro, B.; Long, D.-L.; Cronin, L. A
1
2
3
4
5
6
7
8
REFERENCES
(1) (a) Pope, M. T. Heteropoly and Isopoly Oxometalates. Springer-
Verlag 1983. (b) Day, V. W.; Klemperer, W. G. Metal Oxide Chemistry in
Solution: The Early Transition Metal Polyoxoanions. Science 1985, 228
(4699), 533-541. (c) Pope, M. T.; Müller, A. Polyoxometalate Chemistry:
An Old Field with New Dimensions in Several Disciplines. Angew. Chem.
Int. Ed. 1991, 30 (1), 34-48. (d) Eur. J. Inorg. Chem. 2009, 34 (Issue
dedicated to Polyoxometalates; Guest Ed.: Kortz, U.) (e) Jeannin, Y. P.
The Nomenclature of Polyoxometalates:ꢀ How To Connect a Name and a
Structure. Chem. Rev. 1998, 98 (1), 51-76. (f) Dolbecq, A.; Dumas, E.;
Mayer, C. R.; Mialane, P. Hybrid Organic−Inorganic Polyoxometalate
Compounds: From Structural Diversity to Applications. Chem. Rev. 2010,
110 (10), 6009-6048.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supramolecular
Heteropolyoxopalladate
{Pd15}
Cluster
Host
Encapsulating a {Pd2} Dinuclear Guest: [PdII2⊂{H7PdII15O10(PO4)10}]9−. J.
Am. Chem. Soc. 2011, 133 (13), 4684-4686. (g) Izarova, N. V.; Vankova,
N.; Banerjee, A.; Jameson, G. B.; Heine, T.; Schinle, F.; Hampe, O.;
Kortz, U.
A Noble-Metalate Bowl: The Polyoxo-6-vanado(V)-7-
palladate(II) [Pd7V6O24(OH)2]6−. Angew. Chem. Int. Ed. 2010, 49 (42),
7807-7811. (h) Barsukova-Stuckart, M.; Izarova, N. V.; Jameson, G. B.;
Ramachandran, V.; Wang, Z.; vanꢁTol, J.; Dalal, N. S.; NgoꢁBiboum,
R.; Keita, B.; Nadjo, L.; Kortz, U. Synthesis and Characterization of the
(2) (a) Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons
with hydrogen peroxide by vanadium-based polyoxometalates. Coord.
Chem. Rev. 2011, 255 (19), 2358-2370. (b) Briand, L. E.; Baronetti, G.
T.; Thomas, H. J. The state of the art on Wells–Dawson heteropoly-
compounds: A review of their properties and applications. Appl. Catal. A
2003, 256 (1), 37-50. (c) Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.;
Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L.
A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based
on Abundant Metals. Science 2010, 328, 342-345. (d) Coronado, E.;
Giménez-Saiz, C.; Gómez-García, C. J. Recent advances in
polyoxometalate-containing molecular conductors. Coord. Chem. Rev.
2005, 249 (17), 1776-1796. (e) Compain, J.-D.; Mialane, P.; Dolbecq,
A.; Mbomekallé, I. M.; Marrot, J.; Sécheresse, F.; Rivière, E.; Rogez,
G.; Wernsdorfer, W. Iron Polyoxometalate Single-Molecule Magnets.
Angew. Chem. Int. Ed. 2009, 48 (17), 3077-3081. (f) Ritchie, C.;
Ferguson, A.; Nojiri, H.; Miras, H. N.; Song, Y.-F.; Long, D.-L.;
Burkholder, E.; Murrie, M.; Kögerler, P.; Brechin, E. K.; Cronin, L.
Polyoxometalate-Mediated Self-Assembly of Single-Molecule Magnets:
Dicopper(II)-Containing
22-Palladate(II)[CuII PdII22PV12O60(OH)8]20−
.
2
Angew. Chem. Int. Ed. 2011, 50 (11), 2639-2642. (i) Xu, F.; Miras, H. N.;
Scullion, R. A.; Long, D.-L.; Thiel, J.; Cronin, L. Correlating the magic
numbers of inorganic nanomolecular assemblies with a {Pd84} molecular-
ring Rosetta Stone. Proc. Natl. Acad. Sci. 2012, 109 (29), 11609-11612.
(6) Yang, P.; Xiang, Y.; Lin, Z.; Bassil, B. S.; Cao, J.; Fan, L.; Fan,
Y.; Li, M.-X.; Jiménez-Lozano, P.; Carbó, J. J.; Poblet, J. M.; Kortz, U.
Alkaline Earth Guests in Polyoxopalladate Chemistry: From Nanocube to
Nanostar via an Open-Shell Structure. Angew. Chem. Int. Ed. 2014, 53
(44), 11974-11978.
(7) (a) Yang, P.; Xiang, Y.; Lin, Z.; Lang, Z.; Jiménez-Lozano, P.;
Carbó, J. J.; Poblet, J. M.; Fan, L.; Hu, C.; Kortz, U. Discrete Silver(I)-
Palladium(II)-Oxo Nanoclusters, {Ag4Pd13} and {Ag5Pd15}, and the Role
of Metal–Metal Bonding Induced by Cation Confinement. Angew. Chem.
Int. Ed. 2016, 55 (51), 15766-15770. (b) Izarova, N. V.; Kondinski, A.;
Vankova, N.; Heine, T.; Jäger, P.; Schinle, F.; Hampe, O.; Kortz, U.
The
Mixed
8
Gold–Palladium
Polyoxo-Noble-Metalate
{[XW9O34]2[MnIII4MnII O4(H2O)4]}12−. Angew. Chem. 2008, 120 (30),
[NaAuIII4PdII O8(AsO4)8]11−. Chem. Eur. J. 2014, 20 (28), 8556-8560. (c)
2
5691-5694. (g) Pope, M. T.; Müller, A. Polyoxometalates: From Platonic
Solids to Anti-Retroviral Activity. Springer Netherlands: 2012. (h) Chem.
Rev. 1998, 98 (Special Issue on Polyoxometalates; Ed.: Hill, C. L.) (i)
Müller, A.; Roy, S. En route from the mystery of molybdenum blue via
related manipulatable building blocks to aspects of materials science.
Coord. Chem. Rev. 2003, 245 (1), 153-166. (j) Coronado, E.; Day, P.
Magnetic Molecular Conductors. Chem. Rev. 2004, 104 (11), 5419-5448.
(k) Kortz, U.; Müller, A.; van Slageren, J.; Schnack, J.; Dalal, N. S.;
Dressel, M. Polyoxometalates: Fascinating structures, unique magnetic
properties. Coord. Chem. Rev. 2009, 253 (19), 2315-2327.
(3) (a) Fiaud, J. C.; Malleron, J. L.; Legros, J. Y. Handbook of
Palladium-Catalysed Organic Reactions. Elsevier Science: 1997. (b)
Somorjai, G. A.; Li, Y. Introduction to Surface Chemistry and Catalysis.
John Wiley & Sons: 2010. (c) Mallat, T.; Baiker, A. Oxidation of
Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004,
104 (6), 3037-3058. (d) Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.;
Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-regeneration of
a Pd-perovskite catalyst for automotive emissions control. Nature 2002,
418, 164.
(4) (a) Chubarova, E. V.; Dickman, M. H.; Keita, B.; Nadjo, L.;
Miserque, F.; Mifsud, M.; Arends, I. W. C. E.; Kortz, U. Self-Assembly
of a Heteropolyoxopalladate Nanocube: [PdII13AsV8O34(OH)6]8−. Angew.
Chem. Int. Ed. 2008, 47 (49), 9542-9546. (b) Izarova, N. V.; Pope, M. T.;
Kortz, U. Noble Metals in Polyoxometalates. Angew. Chem. Int. Ed. 2012,
51 (38), 9492-9510. (c) Yang, P.; Kortz, U. Discovery and Evolution of
Polyoxopalladates. Acc. Chem. Res. 2018, 51, 1599−1608.
(5) (a) Izarova, N. V.; Biboum, R. N.; Keita, B.; Mifsud, M.; Arends,
I. W. C. E.; Jameson, G. B.; Kortz, U. Self-assembly of star-shaped
heteropoly-15-palladate(II). Dalton Trans. 2009, (43), 9385-9387. (b)
Izarova, N. V.; Dickman, M. H.; Biboum, R. N.; Keita, B.; Nadjo, L.;
Ramachandran, V.; Dalal, N. S.; Kortz, U. Heteropoly-13-Palladates(II)
[PdII13(AsVPh)8O32]6− and [PdII13SeIV8O32]6−. Inorg. Chem. 2009, 48 (16),
7504-7506. (c) Barsukova, M.; Izarova, N. V.; Biboum, R. N.; Keita, B.;
Izarova, N. V.; Vankova, N.; Heine, T.; Biboum, R. N.; Keita, B.;
Nadjo, L.; Kortz, U. Polyoxometalates Made of Gold: The Polyoxoaurate
[AuIII4AsV4O20]8−. Angew. Chem. Int. Ed. 2010, 49 (10), 1886-1889. (d)
Pley, M.; Wickleder, M. S. The Cluster Ion [Pt12O8(SO4)12]4−. Angew.
Chem. Int. Ed. 2004, 43 (32), 4168-4170.
(8) Geletii, Y. V.; Botar, B.; Kögerler, P.; Hillesheim, D. A.;
Musaev, D. G.; Hill, C. L. An All-Inorganic, Stable, and Highly Active
Tetraruthenium Homogeneous Catalyst for Water Oxidation. Angew.
Chem. 2008, 120 (21), 3960-3963.
(9) (a) Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia,
S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. Polyoxometalate
Embedding of a Tetraruthenium(IV)-oxo-core by Template-Directed
Metalation of [γ-SiW10O36]8−: A Totally Inorganic Oxygen-Evolving
Catalyst. J. Am. Chem. Soc. 2008, 130 (15), 5006-5007. (b) Sartorel, A.;
Miró, P.; Salvadori, E.; Romain, S.; Carraro, M.; Scorrano, G.;
Valentin, M. D.; Llobet, A.; Bo, C.; Bonchio, M. Water Oxidation at a
Tetraruthenate Core Stabilized by Polyoxometalate Ligands: Experimental
and Computational Evidence To Trace the Competent Intermediates. J.
Am. Chem. Soc. 2009, 131 (44), 16051-16053.
(10) (a) Special Issue on Metal-Organic Frameworks. Chem. Soc. Rev.
2014, 43, 5415. (b) Special Issue on Metal-Organic Frameworks. Chem.
Soc. Rev. 2017, 46, 3104. (c) Kaskel, S. The Chemistry of Metal-Organic
Frameworks,
2
Volume Set: Synthesis, Characterization, and
Applications. Wiley: 2016.
(11) Du, D.-Y.; Qin, J.-S.; Li, S.-L.; Su, Z.-M.; Lan, Y.-Q. Recent
advances in porous polyoxometalate-based metal–organic framework
materials. Chem. Soc. Rev. 2014, 43 (13), 4615-4632.
(12) Johnson, B. J. S.; Schroden, R. C.; Zhu, C.; Stein, A. Synthesis
and Characterization of 2D and 3D Structures from Organic Derivatives of
Polyoxometalate Clusters:ꢀ Role of Organic Moiety, Counterion, and
Solvent. Inorg. Chem. 2001, 40 (23), 5972-5978.
ACS Paragon Plus Environment