Journal of the American Chemical Society
Communication
ACKNOWLEDGMENTS
■
Support from the Air Force Office of Scientific Research
(FP048956) and the National Science Foundation (DMR
1342940) are gratefully acknowledged.
REFERENCES
■
(1) Crivello, J. V. J. Photopolym. Sci. Technol. 2009, 22, 575−582.
(2) Ivan, M. G.; Scaiano, J. C. Photochemistry and Photophysics of
Polymer Materials. 2010, 479−507.
(3) Ito, H. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3863−3870.
(4) Stewart, M. D.; Tran, H. V.; Schmid, G. M.; Stachowiak, T. B.;
Becker, D. J.; Willson, G. C. J. Vac. Sci. Technol., B: Microelectron.
Process. Phenom. 2002, 20, 2946−2952.
(5) Jussila, S.; Puustinen, M.; Hassinen, T.; Olkkonen, J.; Sandberg,
H. G. O.; Solehmainen, K. Org. Electron. 2012, 13, 1308−1314.
(6) Chou, P.-T.; Solntsev, K. M. J. Phys. Chem. B 2015, 119, 2089.
(7) Ireland, J. F.; Wyatt, P. A. H. Adv. Phys. Org. Chem. 1976, 12,
131−160.
(8) Shizuka, H. Acc. Chem. Res. 1985, 18, 141−147.
(9) Arnaut, L. G.; Formosinho, S. J. J. Photochem. Photobiol., A 1993,
75, 1−20.
Figure 2. UV−vis spectra (taken using a 1 mm cuvette) of a solution
of 2 and an acridine dye before (orange) and after (blue) irradiation
(left) and the structures of the acridine dye and its protonated form
(right).
(Figure 2). Before irradiation, UV−vis spectrum showed a
strong absorption at 438 nm, which is an overlap of the
absorption of 2 and the dye. After irradiation, this absorption
decreased due to the photoreaction of 2 and protonation of the
dye. The protonated dye showed a peak at 601 nm. The dark
green color of the solution is a combination of blue and orange.
The protonation was reversible. After 8 h, the absorption at 438
nm recovered to 98% of the original level.
The quantum yield of the photoreaction was measured by
irradiating a solution of 2 in DMSO. The good solubility of 2 in
DMSO allows a relatively high concentration to be used. Given
that the quantum yield of 1 was also measured in DMSO, the
quantum yield of 2 in DMSO can be compared with that of 1.
Solutions of 2 with concentrations near 0.06 mM (absorbance
>1.5) were irradiated for 3 s using a 470 nm LED. The intensity
of light was measured by an Apogee quantum meter. The
photon flux was set to be ∼90 μmol·m2·s−1 by adjusting the
distance between the sample and the LED. UV−vis spectra
were quickly taken after irradiation. The amount of the reacted
mPAH was calculated from the decrease of the UV−vis
absorbance. The quantum yield was calculated to be as high as
0.73, which is higher than that of 1 (∼0.30).
In summary, a novel mPAH 2 was designed and synthesized.
It can keep the protonated form in PBS buffer and reversibly
release its proton under visible light with a high quantum yield
of 0.73. While the design is based on the dual acid−base
property and tautomerization of indazole, the detailed
mechanism deserves further spectroscopic and theoretical
study. This type of photoacid is promising for control of
proton-transfer processes in physiological conditions and
finding applications in biomedical areas.
(10) Wan, P.; Shukla, D. Chem. Rev. 1993, 93, 571−584.
(11) Tolbert, L.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19−27.
(12) Emond, M.; Le Saux, T.; Maurin, S.; Baudin, J.-B.; Plasson, R.;
Jullien, L. Chem. - Eur. J. 2010, 16, 8822−8831.
(13) Shi, Z.; Peng, P.; Strohecker, D.; Liao, Y. J. Am. Chem. Soc. 2011,
133, 14699−14703.
(14) Johns, V. K.; Wang, Z.; Li, X.; Liao, Y. J. Phys. Chem. A 2013,
117, 13101−13104.
(15) Johns, V. K.; Peng, P.; DeJesus, J.; Wang, Z.; Liao, Y. Chem. -
Eur. J. 2014, 20, 689−692.
(16) Shi, Z.; Peng, P.; Johns, V. K.; Liao, Y. Polym. Prepr. 2012, 53,
125−126.
(17) Luo, Y.; Wang, C.; Peng, P.; Hossain, M.; Jiang, T.; Fu, W.; Liao,
Y.; Su, M. J. Mater. Chem. B 2013, 1, 997−1001.
(18) Wang, Z.; Johns, V. K.; Liao, Y. Chem. - Eur. J. 2014, 20, 14637−
14640.
(19) Chen, H.; Liao, Y. J. Photochem. Photobiol., A 2015, 300, 22−26.
(20) Maity, C.; Hendriksen, W. E.; Van Esch, J. H.; Eelkema, R.
Angew. Chem., Int. Ed. 2015, 54, 998−1001.
(21) Tatum, L. A.; Foy, J. T.; Aprahamian, I. J. Am. Chem. Soc. 2014,
136, 17438−17441.
(22) Bao, H.; Li, F.; Lei, L.; Yang, B.; Li, Z. RSC Adv. 2014, 4,
27277−27280.
(23) Johns, V. K.; Patel, P. K.; Hassett, S.; Calvo-Marzal, P.; Qin, Y.;
Chumbimuni-Torres, K. Y. Anal. Chem. 2014, 86, 6184−6187.
(24) Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 1833−1836.
Raymo, F. M.; Alvarado, R. J.; Giordani, S.; Cejas, M. A. J. Am. Chem.
Soc. 2003, 125, 2361−2364. Giordani, S.; Cejas, M. A.; Raymo, F. M.
Tetrahedron 2004, 60, 10973−10981.
(25) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd
ed.; Wiley-VCH: Weinheim, 2003.
(26) Catalan, J.; de Paz, J. L. G.; Elguero, J. J. Chem. Soc., Perkin
Trans. 2 1996, 57−60.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Details of synthesis, NMR spectra, stability measurement,
ground-state pKa measurement, determination of the
UV−vis absorption of the deprotonated form (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX