Organic Letters
Letter
(4) Furukawa, H.; Wu, T. S.; Ohta, T.; Kuoh, C. S. Chem. Pharm.
Bull. 1985, 33, 4132−4138.
(5) Saha, C. K.; Chowdhury, B. Phytochemistry 1998, 48, 363−366.
(6) (a) Bernardo, P. H.; Chai, C. L. L.; Heath, G. A.; Mahon, P. J.;
Smith, G. D.; Waring, P.; Wilkes, B. A. J. Med. Chem. 2004, 47, 4958−
4963. (b) Moon, Y.; Jeong, Y.; Kook, D.; Hong, S. Org. Biomol. Chem.
Table 4. Concise Synthesis of Murrayaquinone A (6),
Koeniginequinone B (8), and Their Analogues (6a and 6b)
2015, 13, 3918−3923. (c) Sieveking, I.; Thomas, P.; Estev
Quinones, N.; Cuellar, M. A.; Villena, J.; Espinosa-Bustos, C.; Fierro,
A.; Tapia, R. A.; Maya, J. D.; Lopez-Munoz, R.; Cassels, B. K.; Estevez,
R. J.; Salas, C. O. Bioorg. Med. Chem. 2014, 22, 4609−4620.
(7) Camp, D.; Davis, R. A.; Evans-Illidge, E. A.; Quinn, R. J. Future
Med. Chem. 2012, 4, 1067−1084.
́
ez, J. C.;
́
̃
́
́
̃
entry aryne precursor
R1
R2
R3
product (yield, %)
1
2
3
4
12a
12b
12j
H
H
H
H
6 (58)
6a (48)
6b (47)
8 (50)
CH3
H
CH3
H
(8) (a) Ramkumar, N.; Nagarajan, R. RSC Adv. 2015, 5, 87838−
87840. (b) Ramkumar, N.; Nagarajan, R. Org. Biomol. Chem. 2015, 13,
11046−11051. (c) Indumathi, T.; Fronczek, F. R.; Prasad, K. J. R.
Tetrahedron Lett. 2014, 55, 5361−5364. (d) Dethe, D. H.; Murhade,
G. M. Eur. J. Org. Chem. 2014, 2014, 6953−6962. (e) Kaliyaperumal,
S. A.; Banerjee, S.; Kumar, U. K. S. Org. Biomol. Chem. 2014, 12,
6105−6113. (f) Bolibrukh, K.; Khoumeri, O.; Polovkovych, S.;
Novikov, V.; Terme, T.; Vanelle, P. Synlett 2014, 25, 2765−2768.
(g) Abe, T.; Ikeda, T.; Yanada, R.; Ishikura, M. Org. Lett. 2011, 13,
3356−3359. (h) Nishiyama, T.; Choshi, T.; Kitano, K.; Hibino, S.
Tetrahedron Lett. 2011, 52, 3876−3878. (i) Sridharan, V.; Martín, M.
OCH3
H
12d
OCH3
OCH3
In summary, a highly practical, transition-metal-free method
has been developed for the flexible synthesis of carbazolequi-
nones. In these cascade reactions, one C−Si and one C−O
bond are broken, while a C−C bond along with one C−N
bond are formed in one pot. In addition, with an excess of
arynes, the products could react further with arynes to provide
arylated carbazolequinones (14a and 14b), demonstrating
potential expandability and flexibility of this method in forming
molecular diversity. Application of this methodology in
synthesizing more complex carbazolequinones and biological
evaluations of the synthesized carbazolequinones are currently
underway and will be reported in due course.
́
A.; Menendez, J. C. Eur. J. Org. Chem. 2009, 2009, 4614−4621. (j) Xu,
S.; Nguyen, T.; Pomilio, I.; Vitale, M. C.; Velu, S. E. Tetrahedron 2014,
70, 5928−5933.
(9) For reviews on aryne chemistry, see: (a) Yoshida, H.
Multicomponent Reactions in Organic Synthesis; Zhu, J., Wang, Q.,
Wang, M.-X., Eds.; Wiley-VCH: Weinheim, 2014; Chapter 3, pp 39−
71. (b) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550−
3577. (c) Gampe, C. M.; Carreira, E. M. Angew. Chem., Int. Ed. 2012,
51, 3766−3778. (d) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev.
2012, 41, 3140−3152.
ASSOCIATED CONTENT
* Supporting Information
■
S
(10) (a) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983,
́
1211−1214. For a modified procedure, see: (b) Pena, D.; Perez, D.;
̃
The Supporting Information is available free of charge on the
́
Cobas, A.; Guitian, E. Synthesis 2002, 1454−1458.
(11) (a) Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc.
2008, 130, 1558−1559. (b) Chakrabarty, S.; Chatterjee, I.; Tebben, L.;
Studer, A. Angew. Chem., Int. Ed. 2013, 52, 2968−2971.
(12) (a) Bhunia, A.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Org. Lett.
2013, 15, 4620−4623. (b) Bhunia, A.; Roy, T.; Pachfule, P.;
Rajamohanan, P. R.; Biju, A. T. Angew. Chem., Int. Ed. 2013, 52,
10040−10043.
Experimental procedures and spectral data for all new
AUTHOR INFORMATION
Corresponding Author
■
(13) (a) CCDC no. for 13n: 1440413. CCDC no. for 13s: 1440412..
(b) The NMR data of 13t were matched with the reported
compound; 13u and its regioisomer 13u′ were synthesized separately
using the reported methods for structure confirmation (see the
(14) (a) Goetz, A. E.; Bronner, S. M.; Cisneros, J. D.; Melamed, J.
M.; Paton, R. S.; Houk, K. N.; Garg, N. K. Angew. Chem., Int. Ed. 2012,
51, 2758−2762. (b) Im, G. J.; Bronner, S. M.; Goetz, A. E.; Paton, R.
S.; Cheong, P. H. Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010,
132, 17933−17944.
(15) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198−3209.
(16) Tadross, P. M.; Gilmore, C. D.; Bugga, P.; Virgil, S. C.; Stoltz, B.
M. Org. Lett. 2010, 12, 1224−1227.
Author Contributions
†J.G. and I.N.C.K. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the National Natural
Science Foundation of China (Nos. 21572027 and 21372267)
and Chongqing Postdoctoral Research Grants (Nos.
xm2014079 and xm2015097).
(17) Ramtohul, Y. K.; Chartrand, A. Org. Lett. 2007, 9, 1029−1032.
(18) (a) Ciganek, E. Org. React. 2008, 72, 1−366. (b) Brachi, J.;
Rieker, A. Synthesis 1977, 1977, 708−711. (c) Fiaud, J.-C.; Kagan, H.
B. Tetrahedron Lett. 1970, 11, 1813−1816.
REFERENCES
■
(1) (a) Knolker, H. J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303−
4427. (b) Schmidt, A. W.; Reddy, K. R.; Knolker, H. J. Chem. Rev.
2012, 112, 3193−3328.
(2) (a) Watanabe, M.; Snieckus, V. J. Am. Chem. Soc. 1980, 102,
1457−1460. (b) Knolker, H. J.; Frohner, W. J. Chem. Soc., Perkin
Trans. 1 1998, 173−175. (c) Sissouma, D.; Collet, S. C.; Guingant, A.
Y. Synlett 2004, 2004, 2612−2614.
(3) Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; de Chazal, N. M.;
Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. Tetrahedron 1999, 55,
13513−13520.
D
Org. Lett. XXXX, XXX, XXX−XXX