Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
thermodynamically most favoured P–Au–P angle β is expected
to be 180°. Even though several complexes with trigonal-planar
coordination environment are known, a linear coordination
mode is still by far the most favoured for gold(I).24,29,30 As can be
understood from Figure 4 (left), in a hypothetical M:L [2:1]
complex both arms of ligand 1 at 1,1´-position of the ferrocene
unit would be oriented in parallel fashion to each other to bind
the single Au atom (intramolecularly) thus resulting in an angle
β of around 132° (180° – 2·|α–90°|, internal angle sum
4
5
L. Xu, Y.-X. Wang, L.-J. Chen and H.-B. Yang, Chem. Soc.
Rev., 2015, 44, 2148–2167.
DOI: 10.1039/D1CC03755B
S. H. Lim, J. C. Schmitt, J. Shearer, J. Jia, M. M. Olmstead, J.
C. Fettinger and A. L. Balch, Inorg. Chem., 2013, 52, 823–
831.
S. H. Lim and S. M. Cohen, Inorg. Chem., 2013, 52, 7862–
7872.
I. O. Koshevoy, A. J. Karttunen, S. P. Tunik, M. Haukka, S. I.
Selivanov, A. S. Melnikov, P. Y. Serdobintsev and T. A.
Pakkanen, Organometallics, 2009, 28, 1369–1376.
D. T. Walters, R. B. Aghakhanpour, X. B. Powers, K. B.
Ghiassi, M. M. Olmstead and A. L. Balch, J. Am. Chem. Soc.,
2018, 140, 7533–7542.
6
7
triangle‡). The ligand backbone of
1 allows no free
conformational changes (e.g., a rotation of the fc unit, dihedral
angle Θ) that would change this coordination angle on gold(I)
which is far from the favoured linear arrangement and
therefore highly unfavourable. In contrast, this is avoided in the
M:L [4:2] complex 2 by coordinating the gold atoms by two
8
9
D. T. Walters, X. B. Powers, M. M. Olmstead and A. L.
Balch, Chem. Eur. J., 2019, 25, 3849–3857.
separate ligands (intermolecularly). The coordinating arms of 10 T. P. Yoon and E. N. Jacobsen, Science, 2003, 299, 1691–
the ligand backbone would ideally be branched at 120° (1,3,5- 1693.
substituted benzene core); including the angles α results in P– 11 M. Streitberger, A. Schmied and E. Hey-Hawkins, Inorg.
Au–P bond angles β of 168° (180°–2·|α–120°|, ‡), which Chem., 2014, 53, 6794–6804.
deviates much less from ideal linearity. Furthermore, the two 12 A. Schmied, A. Straube, T. Grell, S. Jähnigen and E. Hey-
independent ligands in 2 can additionally compensate this Hawkins, Dalton Trans., 2015, 44, 18760–18768.
deviation by slight conformational changes such as the angle Θ, 13 R. Hoy, P. Lönnecke and E. Hey-Hawkins, Dalton Trans.,
leading to angles β closer to 180° as is in fact observed for P3– 2018, 47, 14515–14520.
Au2–P2. Accordingly, only the formation of the SCC with M:L 14 A. Straube, P. Coburger, L. Dütsch and E. Hey-Hawkins,
[4:2] (2) is observed.
Chem. Sci., 2020, 11, 10657–10668.
15 A. Straube, P. Coburger, M. Michak, M. R. Ringenberg and
E. Hey-Hawkins, Dalton Trans., 2020, 49, 16667–16682.
16 A. Straube, P. Coburger, M. R. Ringenberg and E. Hey-
Hawkins, Chem. Eur. J., 2020, 26, 5758–5764.
17 G. A. Bowmaker, J. C. Dyason, P. C. Healy, L. M.
Engelhardt, C. Pakawatchai and A. H. White, J. Chem. Soc.,
Dalton Trans., 1987, 1089.
18 G. A. Bowmaker, C. L. Brown, R. D. Hart, P. C. Healy, C. E. F.
Rickard and A. H. White, J. Chem. Soc., Dalton Trans.,
1999, 881–890.
19 S. Bestgen, M. T. Gamer, S. Lebedkin, M. M. Kappes and P.
W. Roesky, Chem. Eur. J., 2015, 21, 601–614.
20 N. C. Payne, R. J. Puddephatt, R. Ravindranath and I.
Treurnicht, Can. J. Chem., 1988, 66, 3176–3183.
21 P. G. Jones, A. G. Maddock, M. J. Mays, M. M. Muir and A.
F. Williams, Dalton Trans., 1977, 1434–1439.
22 H. Schmidbaur, Gold Bull., 1990, 23, 11–21.
23 H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G.
Huttner, Chem. Ber., 1977, 110, 2751–2757.
24 P. Schwerdtfeger, H. L. Hermann and H. Schmidbaur,
Inorg. Chem., 2003, 42, 1334–1342.
25 M. Osawa, M.-A. Aino, T. Nagakura, M. Hoshino, Y. Tanaka
and M. Akita, Dalton Trans., 2018, 47, 8229–8239.
26 T. Grell and E. Hey-Hawkins, Eur. J. Inorg. Chem. 2020,
2020, 732–736.
27 R. Visbal, J. M. López-de-Luzuriaga, A. Laguna and M. C.
Gimeno, Dalton Trans., 2014, 43, 328–334.
28 R. Visbal, I. Ospino, J. M. López-de-Luzuriaga, A. Laguna
and M. C. Gimeno, J. Am. Chem. Soc., 2013, 135, 4712–
4715.
29 M. C. Gimeno and A. Laguna, Chem. Rev., 1997, 97, 511–
522.
Conclusions
In conclusion, a new tetradentate tetrakis-phospholane ligand
1 was synthesised and used to create a new M:L [4:2] SCC (2)
with gold(I) in the nanometre scale with Au in a linear
coordination environment. The realisation of the M:L [4:2]
stoichiometry instead of [2:1] can be rationalised by careful
consideration of the geometrical parameters of the ligand.
Furthermore, a comprehensive CSD search on related gold(I)
complexes has shown that with increasing gold-halide
distances, the P–Au–P bond angles approach 180° while the Au–
P bond lengths are usually unaffected. These results are
generally applicable for three-coordinated gold(I) halide
complexes.
Notes and references
‡ For calculation of the P–Au–P bond angle β, an isosceles triangle
between these three atoms is considered. The sum of angles
(always 180°) is composed of β and two identical angles γ. In case
of the hypothetical M:L [2:1] complex the P–C bond is
perpendicular to the P···P connection line and therefore, γ can be
obtained by subtracting 90° from α. Instead, in the idealised M:L
[4:2] complex the trigonal arrangement of the ligand causes a
relative angle of 120° between these two elements and thus
necessitates subtracting 120° from α to obtain γ.
1
N. Dey and C. J. E. Haynes, ChemPlusChem, 2021, 86, 418–
433.
2
3
R. Periasamy, J. Carbohyd. Chem., 2020, 39, 189–216.
Pappalardo, Puglisi and T. Sfrazzetto, Catalysts, 2019, 9,
630.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins