M. E. Hanhan et al. / Tetrahedron Letters 53 (2012) 2388–2391
2391
12. Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
5553–5566.
amounts of catalyst (0.0001%) permitted the coupling of aryl bro-
mides and iodides with boronic acids in very high yields. When 1
was compared with other reported catalysts for Suzuki couplings,
catalyst 1 did not need any additional solvent other than H2O or
additives such as TBAB.22–25 Furthermore, 1 is air-stable and the
reactions were complete in 15 min. The effects of catalyst 1 on
other cross-coupling reactions are currently under investigation.
13. Hierso, J. C.; Fihri, A.; Amardeil, W.; Meunier, P.; Doucet, H.; Santelli, M.;
Donnadieu, B. Organometallics 2003, 22, 4490–4499.
14. Baillie, C.; Zhang, L. X.; Xiao, J. L. J. Org. Chem. 2004, 69, 7779–7782.
15. Thimmaiah, M.; Fang, S. Tetrahedron 2007, 63, 6879–6886.
16. Zhou, J.; Guo, X. M.; Tu, C. Z.; Li, X. Y.; Sun, H. J. J. Organomet. Chem. 2009, 694,
697–702.
17. Guo, X. M.; Zhou, J.; Li, X. Y.; Sun, H. J. J. Organomet. Chem. 2008, 693, 3692–
3696.
18. Characterization data for selected compounds; L: (ATR, m
, cmÀ1) 1632 (C@N),
Acknowledgments
1181 (S@O); 1H NMR (DMSO-d6, d, ppm) 8.21 (2H, s, CH@N), 7.54–7.43 (3H, m,
Ar-H), 7.03 (2H, Ar-H, m), 4.91 (4H, t, J 1.7 Hz, C5H4), 4.73 (4H, t, J 1.6 Hz, C5H4),
4.38 (10H, s, C5H5), 3.17 (8H, m, N(CH2–CH2–CH2–CH3)4), 1.72 (8H, m, N(CH2–
CH2–CH2–CH3)4), 1.29 (8H, m, N(CH2–CH2–CH2–CH3)4), 0.96 (12H, m, N(CH2–
CH2–CH2–CH3)4); 13C NMR (DMSO-d6, d, ppm) 159.3 (N@CH), 142.4 (Ar-C),
133.6 (Ar-C), 130.2 (Ar-C), 127.6 (Ar-C), 122.1 (Ar-C), 121.9 (Ar-C), 121.6 (Ar-C),
121.1 (Ar-C), 119.6 (Ar-C), 117.3 (Ar-C), 80.9 (C5H5), 72.4 (C5H5), 71.3 (C5H5),
70.4 (C5H5), 61.3 (N(CH2–CH2–CH2–CH3)4), 30.7 (N(CH2–CH2–CH2–CH3)4), 18.2
The authors thank the Research Board of Zonguldak Karaelmas
University (BAP-2010-13-02-02, BAP-2011-10-03-11 and BAP-
2011-10-03-012), the Spanish Government (projects MAT2009-
14564-C01) and the Generalitat Valenciana (project PROMETEO/
2009/016) for support.
(N(CH2–CH2–CH2–CH3)4), 15.4 (N(CH2–CH2–CH2–CH3)4); LC–MS (API-ES) m/z
631 (M++1-NBu4, 14%), 630 (M+-NBu4, 36%), 415(28), 260 (100), 242 (NBu4
,
+
48%), 205(14). Anal. Calcd for C48H61Fe2N3O3S: C, 66.13; H, 7.05; N, 4.82.
Supplementary data
Found: C, 66.21; H, 6.97; N, 4.61. Compound 1: FT-IR (ATR,
m
, cm-1) 1562
(C@N), 1183 (S@O); 1H NMR (DMSO-d6, d, ppm) 9.04 (2H, s, CH@N), 7.61–7.58
(3H, m, Ar-H), 7.14 (2H, Ar-H, m), 4.96 (4H, t, J 1.9 Hz, C5H4), 4.77 (4H, t, J
2.0 Hz, C5H4), 4.46 (10H, s, C5H5), 3.36 (8H, m, N(CH2–CH2–CH2–CH3)4), 1.87
(8H, m, N(CH2–CH2–CH2–CH3)4), 1.41 (8H, m, N(CH2-CH2-CH2-CH3)4), 1.14
(12H, m, N(CH2–CH2–CH2–CH3)4); 13C NMR (DMSO-d6, d, ppm) 168.6 (N@CH),
145.7 (Ar-C), 134.1 (Ar-C), 133.7 (Ar-C), 131.6 (Ar-C), 126.3 (Ar-C), 125.3 (Ar-C),
125.1 (Ar-C), 124.9 (Ar-C), 123.1 (Ar-C), 121.7 (Ar-C), 84.1 (C5H5), 75.9 (C5H5),
75.1 (C5H5), 73.6 (C5H5), 66.9 (N(CH2–CH2–CH2–CH3)4), 37.2 (N(CH2–CH2–
CH2–CH3)4), 23.8 (N(CH2–CH2–CH2–CH3)4), 17.6 (N(CH2–CH2–CH2–CH3)4); LC-
MS (API-ES) m/z 807 (M++1-NBu4, 21%), 606 (M+-NBu4, 77%), 421(39), 272 (14),
242 (NBu4+, 21%), 106(100). Anal. Calcd for C48H61Cl2Fe2N3O3PdS; C, 54.95; H,
5.86; N, 4.01; Cl, 6.76. Found: C, 54.59; H, 6.07; N, 4.42; Cl, 7.11.
19. Buffin, B. P.; Fonger, E. B.; Kundu, A. Inorg. Chim. Acta 2003, 355, 340–346.
20. Kundu, A.; Buffin, B. P. Organometallics 2001, 20, 3635–3637.
21. Grasa, G. A.; Hillier, A. C.; Nolan, S. P. Org. Lett. 2001, 3, 1077–1080.
22. Najera, C.; Botella, L. J. Organomet. Chem. 2002, 663, 46–57.
23. Falvello, L. R.; Najera, C.; Gil-Molto, J.; Karlstrom, S. Org. Lett. 2003, 5, 1451–
1454.
Supplementary data associated with this article can be found, in
include MOL files and InChiKeys of the most important compounds
described in this article.
References and notes
1. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
2. Suzuki, A. J. Organomet. Chem. 2002, 653, 83–90.
3. Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047–1062.
4. Littke, A. F.; Dai, C. Y.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020–4028.
5. Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722–9723.
6. Botella, L.; Najera, C. Angew. Chem., Int. Ed. 2002, 41, 179–181.
7. Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173–6177.
8. Hanhan, M. E.; Senemoglu, Y. Transition Met. Chem. 2012, 37, 109–116.
9. Zhou, J.; Guo, X.; Tu, C.; Li, X.; Sun, H. J. Organomet. Chem. 2009, 694, 697–702.
10. Liu, S. Y.; Choi, M. J.; Fu, G. C. Chem. Commun. 2001, 2408–2409.
11. Roca, F. X.; Richards, C. J. Chem. Commun. 2003, 3002–3003.
24. Wang, J. X.; Bai, L.; Zhang, Y. M. Green Chem. 2003, 5, 615–617.
25. Bedford, R. B.; Butts, C. P.; Hurst, T. E.; Lidstrom, P. Adv. Synth. Catal. 2004, 346,
1627–1630.