F. Tian, et al.
EuropeanJournalofPharmacology873(2020)172989
Fig. 6. OI ameliorates renal fibrosis by attenuating activation of TGF-β/Smad and NF-κB pathways, reducing generation of reactive oxygen species and inhibiting
autophagy.
and adenine-induced models. OI inhibited renal fibrosis via attenuating
activation of TGF-β/Smad pathway, reducing generation of reactive
oxygen species and inhibiting autophagy (Fig. 6). Importantly, there
were no side effects observed in OI treated rats. These results strongly
suggest the clinical potential of OI for managing renal fibrosis.
Hori, M., 1999. Increased oxidative stress in mouse kidneys with unilateral ureteral
Kabeya, Y., 2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane
Kalluri, R., Weinberg, R.A., 2009. The basics of epithelial-mesenchymal transition. J. Clin.
Declaration of competing interest
The authors have declared that no competing interest exists.
Acknowledgments
Kasiske, B.L., Wheeler, D.C., 2013. KDIGO 2012 clinical practice guideline for the eva-
luation and management of chronic kidney disease kidney. Int. Suppl. 3, 2. https://
Kong, W., Fu, J., Liu, N., Jiao, C., Guo, G., Luan, J., Wang, H., Yao, L., Wang, L.,
Yamamoto, M., Pi, J., Zhou, H., 2018. Nrf2 deficiency promotes the progression from
acute tubular damage to chronic renal fibrosis following unilateral ureteral ob-
This work was financially supported by the National Natural Science
Foundation of China (Grants 81703691, 21702231), the Program for
Jiangsu Province Innovative Research Team, “Double First-Class”
Project of China Pharmaceutical University (CPU2018GF05), and to my
love Zifeng Zhao for the spirit support. Many thanks to my friend
Janelle Stewart from the University of Michigan for helping me correct
my grammar and modify the language.
Liu, Y., 2004. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic
significance, molecular mechanism, and therapeutic intervention. J. Am. Soc.
Levey, A.S., Eckardt, K., Tsukamoto, Y., Levin, A., Coresh, J., Rossert, J., Zeeuw, D.D.E.,
Hostetter, T.H., Lameire, N., Eknoyan, G., 2005. Definition and classification of
chronic kidney disease: a position statement from Kidney Disease. Improv. Glob.
Lampropoulou, V., Sergushichev, A., Bambouskova, M., Nair, S., Vincent, E.E.,
Loginicheva, E., Cervantes-Barragan, L., Ma, X., Huang, S.C., Griss, T., Weinheimer,
C.J., Khader, S., Randolph, G.J., Pearce, E.J., Jones, R.G., Diwan, A., Diamond, M.S.,
Artyomov, M.N., 2016. itaconate links inhibition of succinate dehydrogenase with
macrophage metabolic remodeling and regulation of inflammation cell. Metab 24,
Meng, X., Nikolic-Paterson, D.J., Lan, H.Y., 2016. TGF-β: the master regulator of fibrosis.
Mills, E.L., Ryan, D.G., Prag, H.A., Dikovskaya, D., Menon, D., Zaslona, Z., Jedrychowski,
M.P., Costa, A.S.H., Higgins, M., Hams, E., Szpyt, J., Runtsch, M.C., King, M.S.,
McGouran, J.F., Fischer, R., Kessler, B.M., McGettrick, A.F., Hughes, M.M., Carroll,
R.G., Booty, L.M., Knatko, E.V., Meakin, P.J., Ashford, M.L.J., Modis, L.K., Brunori,
G., Sévin, D.C., Fallon, P.G., Caldwell, S.T., Kunji, E.R.S., Chouchani, E.T., Frezza, C.,
Dinkova-Kostova, A.T., Hartley, R.C., Murphy, M.P., O Neill, L.A., 2018. Itaconate is
an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature
Pujalté, I., Passagne, I., Brouillaud, B., Tréguer, M., Durand, E., Ohayon-Courtès, C., Azou,
B.L., 2011. Cytotoxicity and oxidative stress induced by different metallic nano-
Perico, L., Wyatt, C.M., Benigni, A., 2018. A new BEACON of hope for the treatment of
inflammation? The endogenous metabolite itaconate as an alternative activator of the
Pang, M., Ma, L., Gong, R., Tolbert, E., Mao, H., Ponnusamy, M., Chin, Y.E., Yan, H.,
Dworkin, L.D., huang, S.Z., 2010. A novel STAT3 inhibitor, S3I-201, attenuates renal
interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy
Ryan, M.J., Johnson, G., Kirk, J., Fuerstenberg, S.M., Zager, R.A., Torok-Storb, B., 1994.
HK-2: an immortalized proximal tubule epithelial cell line from normal adult human
Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B., 2010. Oxidative stress,
References
Boor, P., Ostendorf, T., 2010. J. Floege Renal fibrosis: novel insights into mechanisms and
Bjørkøy, G., Lamark, T., Johansen, T., 2014. p62/SQSTM1: a missing link between pro-
tein aggregates and the autophagy machinery. Autophagy 2, 138–139. https://doi.
Cachofeiro, V., Goicochea, M., de Vinuesa, S.G., Oubiña, P., Lahera, V., Luño, J., 2008.
Oxidative stress and inflammation, a link between chronic kidney disease and car-
Couser, W.G., Remuzzi, G., Mendis, S., Tonelli, M., 2011. The contribution of chronic
kidney disease to the global burden of major noncommunicable diseases Kidney. Bar
Diao, W., Chen, W., Cao, W., Yuan, H., Ji, H., Wang, T., Chen, W., Zhu, X., Zhou, H., Guo,
H., Zhao, X., 2019. Astaxanthin protects against renal fibrosis through inhibiting
myofibroblast activation and promoting CD8+ T cell recruitment Biochimica et.
Jia, T., Olauson, H., Lindberg, K., Amin, R., Edvardsson, K., Lindholm, B., Andersson, G.,
Wernerson, A., Sabbagh, Y., Schiavi, S., Larsson, T.E., 2013. A novel model of ade-
nine-induced tubulointerstitial nephropathy in mice. BMC Nephrol. 14. https://doi.
Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., Saran, R., Wang, A.Y.,
Yang, C., 2013. Chronic kidney disease: global dimension and perspectives. Lancet
Ji, J., Zhu, P., Sun, C., Sun, J., An, L., Zhang, Y., Sun, X., 2017. Pathway of 3-MCPD-
induced apoptosis in human embryonic kidney cells. J. Toxicol. Sci. 42, 43–52.
Kawada, N., Moriyama, T., Ando, A., Fukunaga, M., Miyata, T., Kurokawa, K., Imai, E.,
8