10.1002/anie.201900466
Angewandte Chemie International Edition
COMMUNICATION
Zhang, Nature Chem. 2017, 9, 918-923; c) J. Sheng, H.-Q. Ni, K.-J. Bian,
Y. Li, N. Wang, X.-S. Wang, Org. Chem. Front. 2018, 5, 606-610.
[7] a) G. Ma, W. Wan, J. Li, Q. Hu, H. Jiang, S. Zhu, J. Wang, J. Hao, Chem.
Commun. 2014, 50, 9749-9752; b) X.-J. Tang, Z. Zhang, W. R. Dolbier,
Jr., Chem. Eur. J. 2015, 21, 18961-18965.
to generate a cyanide anion in situ under mild conditions. The
convenient cyanodifluoromethylation protocol may find utility in
the synthesis of HCF2/CN-containing biologically active
molecules.
[8] a) Z. Zhang, X.-J. Tang, W. R. Dolbier, Org. Lett. 2016, 18, 1048-1051; b)
Z. Zhang, H. Martinez, W. R. Dolbier, J. Org. Chem. 2017, 82, 2589-
2598; c) Y. Duan, W. Li, P. Xu, M. Zhang, Y. Cheng, C. Zhu, Org. Chem.
Front. 2016, 3, 1443-1446.
Acknowledgements
The authors thank the National Natural Science Foundation
(21421002, 21672242), Key Research Program of Frontier
Sciences (CAS) (QYZDJSSW-SLH049), National Basic
Research Program of China (2015CB931903), and the Chinese
Academy of Sciences (XDA02020105, XDA02020106) for
financial support.
[9] a) J. Liao, L. Fan, W. Guo, Z. Zhang, J. Li, C. Zhu, Y. Ren, W. Wu, H.
Jiang, Org. Lett. 2017, 19, 1008-1011; b) Y. Arai, R. Tomita, G. Ando, T.
Koike, M. Akita, Chem. Eur. J. 2016, 22, 1262-1265; c) W. Fu, X. Han, M.
Zhu, C. Xu, Z. Wang, B. Ji, X.-Q. Hao, M.-P. Song, Chem. Commun.
2016, 52, 13413-13416.
[10] a) Q.-Y. Lin, Y. Ran, X.-H. Xu, F.-L. Qing, Org. Lett. 2016, 18, 2419-2422;
b) C. S. Thomoson, X.-J. Tang, W. R. Dolbier, J. Org. Chem. 2015, 80,
1264-1268.
Keywords: Difluorocarbene
•
Cyanodifluoromethylation
•
[11] a) P. Anbarasan, T. Schareina, M. Beller, Chem. Soc. Rev. 2011, 40,
5049-5067; b) T. Wang, N. Jiao, Acc. Chem. Res. 2014, 47, 1137-1145;
c) N. Kurono, T. Ohkuma, ACS Catal. 2016, 6, 989-1023; d) J. Cui, J.
Song, Q. Liu, H. Liu, Y. Dong, Chem. Asian J. 2018, 13, 482-495; e) T.
Najam, S. S. A. Shah, K. Mehmood, A. U. Din, S. Rizwan, M. Ashfaq, S.
Shaheen, A. Waseem, Inorg. Chim. Acta 2018, 469, 408-423.
[12] a) J. Zheng, L. Wang, J.-H. Lin, J.-C. Xiao, S. H. Liang, Angew. Chem.
Int. Ed. 2015, 54, 13236-13240; b) J. Zheng, R. Cheng, J.-H. Lin, D. H.
Yu, L. Ma, L. Jia, L. Zhang, L. Wang, J.-C. Xiao, S. H. Liang, Angew.
Chem. Int. Ed. 2017, 56, 3196-3200; c) J. Yu, J.-H. Lin, J.-C. Xiao,
Angew. Chem. Int. Ed. 2017, 56, 16669-16673; d) J.-J. Luo, M. Zhang,
J.-H. Lin, J.-C. Xiao, J. Org. Chem. 2017, 82, 11206-11211.
[13] a) N. O. Ilchenko, P. G. Janson, K. J. Szabo, J. Org. Chem. 2013, 78,
11087-11091; b) Y.-T. He, L.-H. Li, Y.-F. Yang, Z.-Z. Zhou, H.-L. Hua, X.-
Y. Liu, Y.-M. Liang, Org. Lett. 2014, 16, 270-273; c) Y.-T. He, L.-H. Li, Z.-
Z. Zhou, H.-L. Hua, Y.-F. Qiu, X.-Y. Liu, Y.-M. Liang, Org. Lett. 2014, 16,
3896-3899; d) F. Wang, D. Wang, X. Wan, L. Wu, P. Chen, G. Liu, J. Am.
Chem. Soc. 2016, 138, 15547-15550; e) Y. Zhu, J. Tian, X. Gu, Y. Wang,
J. Org. Chem. 2018, 83, 13267-13275.
Alkenes • Photocatalysis • Fluorine
[1] a) J. A. Erickson, J. I. McLoughlin, J. Org. Chem. 1995, 60, 1626-1631; b)
N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591.
[2] D. E. Yerien, S. Barata-Vallejo, A. Postigo, Chem. Eur. J. 2017, 23,
14676-14701.
[3] a) C.-P. Zhang, Q.-Y. Chen, Y. Guo, J.-C. Xiao, Y.-C. Gu, Coord. Chem.
Rev. 2014, 261, 28-72; b) C. Ni, J. Hu, Synthesis 2014, 46, 842-863; c) Y.
Lu, C. Liu, Q. Y. Chen, Curr. Org. Chem. 2015, 19, 1638-1650; d) J.
Rong, C. Ni, J. Hu, Asian J. Org. Chem. 2017, 6, 139-152; e) S.
Krishnamoorthy, G. K. S. Prakash, Synthesis 2017, 49, 3394-3406.
[4] a) K. Fujikawa, Y. Fujioka, A. Kobayashi, H. Amii, Org. Lett. 2011, 13,
5560-5563; b) G. K. S. Prakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni,
K. Masood, J. K. Swabeck, G. A. Olah, Angew. Chem. Int. Ed. 2012, 51,
12090-12094; c) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter,
D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem.
Soc. 2012, 134, 1494-1497; d) Z. He, M. Hu, T. Luo, L. Li, J. Hu, Angew.
Chem. Int. Ed. 2012, 51, 11545-11547; e) J. Rong, L. Deng, P. Tan, C.
Ni, Y. Gu, J. Hu, Angew. Chem. Int. Ed. 2016, 55, 2743-2747; f) Q.-Y.
Lin, X.-H. Xu, K. Zhang, F.-L. Qing, Angew. Chem. Int. Ed. 2016, 55,
1479-1483; g) L. Xu, D. A. Vicic, J. Am. Chem. Soc. 2016, 138, 2536-
2539; h) H. Serizawa, K. Ishii, K. Aikawa, K. Mikami, Org. Lett. 2016, 18,
3686-3689; i) Z. Ruan, S.-K. Zhang, C. Zhu, P. N. Ruth, D. Stalke, L.
Ackermann, Angew. Chem. Int. Ed. 2017, 56, 2045-2049; j) G. Tu, C.
Yuan, Y. Li, J. Zhang, Y. Zhao, Angew. Chem. Int. Ed. 2018, 57, 15597-
15601.
[14] a) C. K. Prier, D. A. Rankic, D. W. MacMillan, Chem. Rev. 2013, 113,
5322-5363; b) D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116,
9850-9913.
[15] a) G. Zhang, X. Ren, J. Chen, M. Hu, J. Cheng, Org. Lett. 2011, 13,
5004-5007; b) J. Kim, J. Choi, K. Shin, S. Chang, J. Am. Chem. Soc.
2012, 134, 2528-2531; c) Y. Zhu, M. Zhao, W. Lu, L. Li, Z. Shen, Org.
Lett. 2015, 17, 2602-2605.
[16] Z. Deng, J.-H. Lin, J. Cai, J.-C. Xiao, Org. Lett. 2016, 18, 3206-3209.
[17] Y. Ran, Q.-Y. Lin, X.-H. Xu, F.-L. Qing, J. Org. Chem. 2016, 81, 7001-
7007.
[5] a) Y. Zhao, W. Huang, J. Zheng, J. Hu, Org. Lett. 2011, 13, 5342-5345; b)
P. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524-5527; c) S.-
Q. Zhu, Y.-L. Liu, H. Li, X.-H. Xu, F.-L. Qing, J. Am. Chem. Soc. 2018,
140, 11613-11617.
[18] Q. Guo, M. Wang, Y. Wang, Z. Xu, R. Wang, Chem. Commun. 2017, 53,
12317-12320.
[6] a) T. Iida, R. Hashimoto, K. Aikawa, S. Ito, K. Mikami, Angew. Chem. Int.
Ed. 2012, 51, 9535-9538; b) Z. Feng, Q. Q. Min, X. P. Fu, L. An, X.
This article is protected by copyright. All rights reserved.