Mercury() Complexes with Novel Functional Rigid Ligands
H), 7.83 (d, J = 8.4 Hz, 2 H), 8.52 (s, 2 H), 8.55 (d, J = 4.8 Hz, 4
FULL PAPER
2
Acknowledgments
13
H). C NMR (600 MHz, [D
1
3
6
]DMSO): δ = 150.43, 145.34, 140.83,
34.51, 128.16, 126.11, 123.63, 123.12, 121.06, 119.97, 110.32,
7.81, 14.31. IR (KBr): ν˜ = 2927 (m), 2860 (w), 1729 (m), 1627
We thank the National Natural Science Foundation of China
50272001, 50335050, 50532030), and Person with Ability Founda-
tion of Anhui Province 2002Z021. We also wish to thank Prof.
D. Q. Wang of University of Liao Cheng for his assistance with the
X-ray structure determinations.
(
(m), 1600 (s), 1485 (m), 1413 (w), 1344 (m), 1233 (m), 1155 (w),
1
126 (w), 1022 (w), 960 (m), 805 (m), 705 (m), 591 (w), 525 (w)
–
1
cm . C28
23 3
H N (401.50): calcd. C 83.76, H 5.77, N 10. 47; found
C 83.80, H 5.76, N 10.44.
2
Preparation of 9-Ethyl-3,6-bis[2-(2-pyridyl)ethenyl]carbazole (L ): 9-
[
1] a) J. S. Evans, R. L. Musselman, Inorg. Chem. 2004, 43, 5613–
5629; b) Z. Q. Qin, M. C. Jennings, R. J. Puddephatt, Inorg.
Chem. 2001, 40, 6220–6228; c) B. Moulton, M. J. Zaworotko,
Chem. Rev. 2001, 101, 1629–1658; d) K. Kim, Chem. Soc. Rev.
Ethyl-3,6-diiodocarbazole (3.13 g, 7 mmol), potassium carbonate
(
7
2.42 g, 17.5 mmol), tetra-n-butylammonium bromide (2.26 g,
mmol), and 2-vinylpyridine (4 mL, 30 mmol) were dissolved in
redistilled N,N-dimethylformamide (7 mL). Palladium() acetate
0.047 g, 0.2 mmol) and tri-o-tolylphosphane (0.21 g, 0.7 mmol)
were added to it. The resulting solution was refluxed for 5 days
and then cooled to room temperature. The residue was extracted
with dichloromethane (600 mL), washed three times with distilled
water, and dried with anhydrous magnesium sulfate. Then it was
filtered and concentrated. The resulting solution was chromato-
graphed over silica gel (200 g). Elution with ethyl acetate/petroleum
ether (2:1) and the recrystallization from ethyl acetate produced
light yellow crystals. Yield: 1.88 g (67%). M.p. 189.3–189.4 °C. H
]DMSO): δ = 1.35 (t, J = 7.2 Hz, 3 H), 4.48
q, J = 7.2 Hz, 2 H), 7.24 (t, J = 6.0 Hz, 2 H), 7.36 (d, J = 16.2 Hz,
H), 7.57 (d, J = 7.2 Hz, 2 H), 7.66 (d, J = 7.2 Hz, 2 H), 7.80 (q,
H), 7.87 (d, J = 16.2 Hz, 2 H), 8.55 (s, 2 H), 8.59 (d, J = 4.2 Hz, 2
]DMSO): δ = 155.59, 149.50, 140.21,
36.81, 133.11, 127.87, 125.58, 125.44, 122.76, 121.91, 121.87,
19.53, 109.74, 37.31, 13.84. IR (KBr): ν˜ = 2933 (m), 2866 (w), [3] a) S. K. Ghosh, P. K. Bharadwaj, Inorg. Chem. 2004, 43, 2293–
2
002, 31, 96–107; e) S. Sailaja, M. Rajasekharan, Inorg. Chem.
003, 42, 5675–5684.
2
(
[
2] a) M. L. Tong, X. M. Chen, B. H. Ye, L. N. Ji, Angew. Chem.
Int. Ed. 1999, 38, 2237–2240; b) M. Eddaoudi, H. Li, O. M.
Yaghi, J. Am. Chem. Soc. 2000, 122, 1391–1397; c) K. S. Min,
M. P. Suh, J. Am. Chem. Soc. 2000, 122, 6834–6840; d) J. Y.
Lu, A. M. Babb, Inorg. Chem. 2001, 40, 3261–3262; e) A. Fu,
X. Huang, J. Li, T. Yuen, C. L. Lin, Chem. Eur. J. 2002, 8,
2239–2247; f) M. L. Tong, Y. M. Wu, J. Ru, X. M. Chen, S.
Kitagawa, Inorg. Chem. 2002, 41, 4846–4848; g) D. M. Shin,
I. S. Lee, Y. K. Chung, Inorg. Chem. 2003, 42, 8838–8848; h)
X. H. Bu, Y. B. Xie, J. R. Li, R. H. Zhang, Inorg. Chem. 2003,
1
NMR (600 MHz, [D
6
4
2, 7422–7430; i) T. J. Burchell, D. J. Eisler, R. J. Puddephatt,
(
Inorg. Chem. 2004, 43, 5550–5557; j) S. Mukhopadhyay, P. B.
Chatterjee, D. Mandal, G. Mostafa, A. Caneschi, J. V. Slag-
eren, T. J. R. Weakley, M. Chaudhury, Inorg. Chem. 2004, 43,
2
4
13
H). C NMR (600 MHz, [D
6
3
413–3420; k) H. Zheng, H. B. Song, M. Du, Sh. T. Chen,
1
1
1
X. H. Bu, Inorg. Chem. 2004, 43, 931–944.
733 (m), 1626 (m), 1590 (s), 1488 (m), 1412 (w), 1385 (m), 1347
w), 1236 (m), 1193 (w), 1160 (w), 1124 (w), 970 (m), 810 (m), 597
2298; b) T. P. Losier, M. J. Zaworotko, Angew. Chem. Int. Ed.
Engl. 1996, 35, 2779–2782; c) K. N. Power, L. Hennigar, M. J.
Zaworotko, Chem. Commun. 1998, 595–596; d) P. J. Hagrman,
D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638–
(
(
1
–
1
w), 520 (w) cm . C28
23 3
H N (401.50): calcd. C 83.76, H 5.77, N
[15]
0.47; found C 83.72, H 5.78, N 10.50.
2
684; e) Z. Q. Qin, M. C. Jennings, R. J. Puddephatt, Inorg.
1
(1): L1 (40.01 mg, 0.1 mmol) in
Preparation of [HgL (SCN)
CH Cl solution (5 mL) was layered onto a solution of Hg(SCN)
31.6 mg, 0.1 mmol) in MeOH (5 mL) and stood for several days
to give red single crystals of 1. Yield 64.64 mg (90%). IR: ν˜ = 2065
vs), 419 (m), 327 (m). C30 23HgN (718.24): calcd. C 50.17, H
.23, N 9.75; found C 50.14, H 3.24, N 9.77.
2
]
n
Chem. 2002, 41, 5174–5186; f) T. Akutagawa, T. Nakamura,
Coord. Chem. Rev. 2003, 226, 3–81; g) Y. B. Dong, P. Wang,
R. Q. Huang, Inorg. Chem. 2004, 43, 4727–4739.
2
2
2
(
[
4] a) A. M. Beatty, Coord. Chem. Rev. 2003, 246, 131–143; b)
H. W. Roesky, M. Andruh, Coord. Chem. Rev. 2003, 236, 91–
(
H
5 2
S
119.
3
[
5] H. J. Hoegl, Phys. Chem. 1965, 69, 755–759.
Preparation of Hg(L1)
solution (5 mL) was layered onto a solution of HgI
0
(2): L1 (40.01 mg, 0.1 mmol) in CHCl
(45.4 mg,
.1 mmol) in MeOH (10 mL) and stood for a week to give yellow
single crystals of 2. Yield 111.91 mg (89%). IR: ν˜ = 420 (m), 151
s). C56 46HgI (1257.38): calcd. C 53.49, H 3.69, N 6.68; found
C 53.51, H 3.68, N 6.69.
Preparation of Hg (SCN)
(L2)
Hg(SCN) (31.6 mg, 0.1 mmol) were dissolved in MeOH (20 mL),
[6] a) M. He, R. J. Twieg, U. Gubler, D. Wright, W. E. Moerner,
Chem. Mater. 2003, 15, 1156–1164; b) K. R. Justin Thomas,
J. T. Lin, Y. T. Tao, Ch. H. Chuen, Chem. Mater. 2002, 14,
2
I
2
3
2
3852–3859; c) B. Liu, L. W. Yu, Y. H. Lai, W. Huang, Chem.
Mater. 2001, 13, 1984–1991; d) Ch. W. Ko, Y. T. Tao, J. T. Lin,
K. R. Justin Thomas, Chem. Mater. 2002, 14, 357–361; e) H.
Chun, I. K. Moon, D. H. Shin, N. Kim, Chem. Mater. 2001,
(
H
2 6
N
1
3, 2818–2823.
(3): L2 (40.01 mg, 0.1 mmol) and
4
2
2
[
7] a) Ch. Y. Su, A. M. Goforth, M. D. Smith, H. C. Z. Loye, In-
org. Chem. 2003, 42, 5685–5692; b) T. J. Burchell, D. J. Eisler,
R. J. Puddephatt, Inorg. Chem. 2004, 43, 5550–5557.
2
refluxed for 2 h at 70 °C, and cooled to give a clear yellow solution.
Yellow crystals suitable for X-ray diffraction were obtained after
two weeks by slow evaporation of the methanol solution at room
temperature. Yield 57.46 mg (80%). IR: ν˜ = 2061 (vs), 420 (m), 328
[8] a) C. J. Horn, A. J. Blake, N. R. Champness, A. Garau, V. Lip-
polis, C. Wilson, M. Schröder, Chem. Commun. 2003, 312–313;
b) L. Y. Kong, Zh. H. Zhang, T. A. Okamura, M. J. Fei, W. Y.
Sun, N. Ueyama, Chem. Lett. 2004, 12, 1572–1573.
(m). C60
2 10 4
H46Hg N S (1436.49): calcd. C 50.17, H 3.23, N 9.75;
[
9] a) P. A. Maggard, C. L. Stern, K. R. Poeppelmeier, J. Am.
Chem. Soc. 2001, 123, 7742–7743; b) Z. Shi, S. H. Feng, S.
Gao, L. R. Zhang, G. Y. Yang, J. Hua, Angew. Chem. Int. Ed.
found C 50.14, H 3.24, N 9.77.
Preparation of [HgL2I (4): L2 (40.01 mg, 0.1 mmol) and HgI
2 n 2
]
2
000, 39, 2325–2326; c) C. Z. Lu, C. D. Wu, S. F. Lu, J. C. Liu,
(31.6 mg, 0.1 mmol) were dissolved in MeOH (20 mL), refluxed for
Q. J. Wu, Q. J. Hui, H. H. Zhuang, J. S. Huang, Chem. Com-
mun. 2002, 152–153; d) Y. Wang, J. H. Yu, M. Guo, R. R. Xu,
Angew. Chem. Int. Ed. 2003, 42, 4089–4092; e) M. C. Hong,
W. P. Su, R. Cao, M. Fujita, J. X. Lu, Chem. Eur. J. 2000, 6,
2
h at 70 °C, and cooled to room temperature giving a clear yellow
solution. Pale yellow crystals suitable for X-ray diffraction were
obtained after several days by slow evaporation of the methanol
solution at room temperature. Yield 77.89 mg (91%). IR: ν˜ = 419
4
27–431; f) X. H. Bu, H. Liu, M. Du, L. Zhang, Y. M. Guo,
(m), 151 (s). C28
H23HgI
2
N
3
(855.88): calcd. C 39.29, H 2.71, N
M. Shionoya, J. Ribas, Inorg. Chem. 2002, 41, 5634–5634; g) J.
Vinje, J. A. Parkinson, P. J. Sadler, T. Brown, E. Sletten, Chem.
4.91; found C 39.28, H 2.72, N 4.92.
Eur. J. Inorg. Chem. 2005, 4976–4984
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
4983