10.1002/chem.201904679
Chemistry - A European Journal
FULL PAPER
13C NMR (101 MHz, CDCl3) = 163.9, 157.1, 145.9, 144.0,
142.4, 141.3, 134.7, 73.7, 69.3, 66.6, 53.6, 50.3, 45.6, 27.8, 26.1
ppm.
HRMS (APPI, CH2Cl2/toluene) [M]+ m/z = 2917.0981 (calcd.),
2917.0954 (found).
139.9, 135.9, 127.8, 126.9, 125.5, 68.3, 68.3, 68.2, 68.1, 63.5,
62.0, 62.0, 60.2, 52.8, 44.5, 44.5, 44.1, 36.8, 32.0, 31.3, 31.0,
30.5, 29.1, 20.0, 13.2 ppm.
Acknowledgements
QC – fullerene monoadduct 20
We gratefully thank the German Research Council (DFG) for
funding through the SFB 953 “Synthetic Carbon Allotropes” and
the project 391585168 “Photochemisch und magnetochemisch
ausgelöste Speicherung/Freisetzung von Sonnenergie in
gespannten organischen Verbindungen”.
QC
–
fullerene monoadduct 20 was prepared by
fullerene
photoisomerization of the corresponding NBD
–
monoadduct 12. For this purpose, 10 mg of compound 12 were
dissolved in thoroughly degassed CDCl3 (2.5 mL). The solution
was transferred into a quartz cuvette which was sealed under
argon atmosphere. Afterwards, the cuvette was irradiated with a
20 mW UV-LED emitting light of a wavelength of 310 nm. The
Keywords: Norbornadiene • fullerenes • energy conversion •
1
reaction was followed by H NMR spectroscopy, which indicated
full conversion after ten hours.
molecular switches, photoswitch
[1]
K. Moth-Poulsen, D. Ćoso, K. Börjesson, N. Vinokurov, S. K. Meier, A.
Majumdar, K. P. C. Vollhardt, R. A. Segalman, Energy Environ. Sci. 2012,
5(9), 8534–8537.
1H NMR (400 MHz, CDCl3) = 7.31-7.27 (m, 4H), 7.21-7.19 (m,
1H), 4.55-4.49 (m, 2H), 4.37-4.30 (m, 2H), 4.08 (s, 3H), 2.63-2.62
(m, 1H), 2.52-2.51 (m, 1H), 2.39-2.36 (m, 1H), 2.26-2.25 (m, 1H),
2.16-2.14 (m, 1H), 1.73-1.72 (m, 1H) ppm.
13C NMR (101 MHz, CDCl3) = 171.6, 164.1, 163.6, 145.5,
145.5, 145.4, 145.4, 145.3, 145.3, 145.2, 145.2, 145.2, 145.1,
144.9, 144.8, 144.8, 144.8, 144.8, 144.1, 144.1, 143.3, 143.3,
143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 142.4, 142.1,
142.1, 142.1, 141.2, 141.2, 139.3, 139.3, 139.1, 139.1, 136.9,
128.8, 127.9, 126.5, 71.5, 65.0, 61.3, 54.3, 51.9, 37.9, 33.1, 32.4,
32.0, 31.5, 30.3, 21.2 ppm.
[2]
[3]
X. An, Y. Xie, Thermochim. Acta 1993, 220, 17–25.
a) G. S. Hammond, N. J. Turro, A. Fischer, J. Am. Chem. Soc. 1961,
83(83), 4674–4675; b) H. Hogeveen, H. C. Volger, J. Am. Chem. Soc.
1967, 89(10), 2486–2487;
[4]
[5]
C.‐L. Sun, C. Wang, R. Boulatov, ChemPhotoChem 2019, 3, 268–283.
H. Taoda, K. Hayakawa, K. Kawase, J. Chem. Eng. Jpn. 1987, 20(4),
335–338.
[6]
a) A. Dreos, Z. Wang, J. Udmark, A. Ström, P. Erhart, K. Börjesson, M.
B. Nielsen, K. Moth-Poulsen, Adv. Energy Mater. 2018, 8(18), 1703401;
b) T. Toda, E. Hasegawa, T. Mukai, H. Tsuruta, T. Hagiwara, T. Yoshida,
Chem. Lett. 1982, 11(10), 1551–1554; c) V. A. Chernoivanov, A. D.
Dubonosov, V. A. Bren, V. I. Minkin, A. N. Suslov, G. S. Borodkin, Mol.
Cryst. Liq. Cryst. Sci. Technol., Sect. A. Cryst. Liq. Cryst. Sci. Technol.,
Sect. A 1997, 297(1), 239–245; d) M. Jevric, A. U. Petersen, M. Mansø,
S. Kumar Singh, Z. Wang, A. Dreos, C. Sumby, M. B. Nielsen, K.
Börjesson, P. Erhart, K. Moth-Poulsen, Chem. - Eur. J 2018, 24(49),
12767–12772;
QC – fullerene hexakisadduct 21
QC – fullerene hexakisadduct 19 is accessible via a BINGEL-
HIRSCH reaction using the corresponding QC malonate 22 or by
photoisomerization of the NBD – fullerene hexakisadduct 15.
[7]
[8]
V. A. Bren', A. D. Dubonosov, V. I. Minkin, V. A. Chernoivanov, Russ.
Chem. Rev. 1991, 60(5), 451–469.
The BINGEL-HIRSCH reaction was carried out according to general
procedure C, using the QC malonate 22. After purification by
column chromatography (toluene/ethyl acetate 90/10 v:v, SiO2)
and removal of the solvent in vacuo the product was obtained as
a) Z. Wang, A. Roffey, R. Losantos, A. Lennartson, M. Jevric, A. U.
Petersen, M. Quant, A. Dreos, X. Wen, D. Sampedro, K. Börjesson, K.
Moth-Poulsen, Energy Environ. Sci. 2019, 12, 187–193; b) J. Manassen,
J. Catal. 1970, 18(1), 38–45; c) S. Miki, T. Ohno, H. Iwasaki, Z. Yoshida,
Tetrahedron Lett. 1985, 26(29), 3487–3490;
a
yellow solid. For detailed information see supporting
information.
[9]
T. Luchs, P. Lorenz, A. Hirsch, ChemPhotoChem 2019, 309, 548.
[10] a) O. Brummel, F. Waidhas, U. Bauer, Y. Wu, S. Bochmann, H.-P.
Steinrück, C. Papp, J. Bachmann, J. Libuda, J. Phys. Chem. Lett. 2017,
8(13), 2819–2825; b) K. Yasufuku, K. Takahashi, C. Kutal, Tetrahedron
Lett. 1984, 25(43), 4893–4896; c) F. Waidhas, M. Jevric, L. Fromm, M.
Bertram, A. Görling, K. Moth-Poulsen, O. Brummel, J. Libuda, Nano
Energy 2019, 63, 103872;
For the photoisomerization, 10 mg of NBD
– fullerene
hexakisadduct 15 were dissolved in 2.5 mL of properly degassed
CDCl3. The solution was transferred into a quartz cuvette which
was sealed under argon atmosphere. Afterwards, the cuvette was
irradiated with a 20 mW UV-LED emitting light of a wavelength of
310 nm. The reaction was followed by 1H NMR spectroscopy,
which indicated full conversion after ten hours.
[11] G. Jones, W. G. Becker, Chem. Phys. Lett. 1982, 85(3), 271–274.
[12] a) S. Leach, M. Vervloet, A. Desprès, E. Bréheret, J. P. Hare, T. John
Dennis, H. W. Kroto, R. Taylor, D. R.M. Walton, Chem. Phys. 1992,
160(3), 451–466; b) D. M. Guldi, M. Prato, Acc. Chem. Res. 2000, 33(10),
695–703;
1H NMR (400 MHz, CDCl3) = 7.27-7.24 (m, 4H), 7.21-7.15 (m,
1H), 4.37-4.26 (m, 22H), 4.20-4.18 (m, 2H), 3.83 (s, 3H), 2.62-
2.60 (m, 1H), 2.49-2.47 (m, 1H), 2.40-2.37 (m, 1H), 2.26-2.25 (m,
1H), 2.17-2.13 (m, 1H), 1.72-1.70 (m, 1H), 1.35-1.30 (m, 30H)
ppm.
13C NMR (101 MHz, CDCl3) = 170.6, 163.3, 163.0, 163.0,
162.9, 162.9, 162.7, 145.1, 145.0, 145.0, 144.9, 144.9, 144.9,
144.9, 144.8, 140.4, 140.3, 140.3, 140.3, 140.3, 140.3, 140.2,
[13] C. Boudon, J.-P. Gisselbrecht, M. Gross, L. Isaacs, H. L. Anderson, R.
Faust, F. Diederich, Helv. Chim. Acta 1995, 78(5), 1334–1344.
[14] A. R. Tuktarov, A. R. Akhmetov, A. A. Khuzin, U. M. Dzhemilev, J. Org.
Chem. 2018, 83(7), 4160–4166.
[15] A. Hirsch, M. Brettreich in Fullerenes -Chemistry and Reactions; Wiley-
VCH, Weinheim, 2004.
This article is protected by copyright. All rights reserved.