S. S. Chimni et al. / Tetrahedron Letters 46 (2005) 5617–5619
5619
H C
(g) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719–
24; For an issue dedicated to organocatalysis, see: Adv.
Synth. Catal. 2004, 346(9–10); Acc. Chem. Res. 2004,
37(8).
3
7
(R)
O
N
(
S)
2. (a) Dickerson, T. J.; Janda, K. D. J. Am. Chem. Soc. 2002,
H
1
24, 3220–3221; (b) Cordova, A.; Notz, W.; Barbas, C. F.,
N
O
III. Chem. Commun. 2002, 3024–3025; (c) Reymond, J.-L.;
Chen, Y. J. Org. Chem. 1995, 60, 6970–6979; (d) Dicker-
son, T. J.; Lovell, T.; Meijler, M. M.; Noodleman, L.;
Janda, K. D. J. Org. Chem. 2004, 69, 6603–6609; For
peptide-catalyzed enantioselective aldol reaction in water
using hydroxy acetone as donor, see: Tang, Z.; Yang, Z.
H.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Org.
Lett. 2004, 6, 2285–2287.
H
Br
Ar
CH3
H
Figure 1.
3
. (a) Weber, A. L. Origin Life 2001, 31, 71; (b) Krishna-
murthy, R.; Pitsch, S.; Arrhenius, G. Origin Life Evol.
Biosphere 1998, 29, 139; (c) Graaf, R. M. D.; Visscher, J.;
Schwartz, A. W. Orig. Life Evol. Biosphere 1998, 28, 271–
activation and orientation of the aldehyde by the amide
proton. The favourable hydrophobic interaction of the
aromatic groups of the catalyst and the aldehyde
enforces the asymmetric environment.
2
82; (d) Graaf, R. M. D.; Visscher, J.; Xu, Y.; Arrhenius,
G.; Schwartz, A. W. J. Mol. Evol. 1998, 47, 501–507; (e)
Sutherland, J. D.; Whitfield, J. N. Tetrahedron 1997, 53,
11493–11527.
Small peptides have proven to be promising organic
catalysts for a number of important transformations.
1
2
We evaluated the catalytic ability of two dipeptide salts,
Pro-PheÆTFA and Pro-AlaÆTFA, in water for the enantio-
selective aldol reaction. The catalyst Pro-PheÆTFA gave 3
in 38% yield and 40% ee in 10 days while Pro-AlaÆTFA
gave no reaction in the same time. The inactivity of the
latter dipeptide as compared to the former may be
because of the absence of the hydrophobic interactions
between catalyst and the aldehyde, which constitute an
integral part of the orientation and activation process.
4. (a) Pizzarello, S.; Weber, A. L. Science 2004, 303, 1151; (b)
Siegel, J. S. Chirality 1998, 10, 24–27, and references cited
therein.
5
6
. Breslow, R. Chem. Biol. 1998, 5, R27–R28.
. Chimni, S. S.; Mahajan, D. Tetrahedron 2005, 61, 5019–
5
025.
7
8
. Roberts, R. D.; Ferran, H. E.; Gula, J. M.; Spencer, T. A.
J. Am. Chem. Soc. 1980, 102, 7054–7058.
. (a) Mase, N.; Tanaka, F.; Barbas, C. F., III. Org. Lett.
2
003, 5, 4369–4372; (b) Ji, C.; Peng, Y.; Huang, C.; Wang,
N.; Jiang, Y. Synlett 2005, 6, 986–990; For protonated
chiral diamines, see: (c) Nakadai, M.; Saito, S.; Yamam-
oto, H. Tetrahedron 2002, 58, 8167–8177; (d) Nakadai, M.;
Saito, S.; Yamamoto, H. Synlett 2001, 1245–1248; (e)
Saito, S.; Yamamoto, H. Acc. Chem. Res. 2004, 37, 570; ,
For an excellent review on protonated chiral catalysts, see:
Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Angew.
Chem., Int. Ed. 2005, 44, 1758–1763.
In summary, we have shown that chiral protonated pro-
linamide derivatives are useful asymmetric catalysts in
water for aldol processes. This methodology addresses
environmental concerns and encompasses the principles
of Green chemistry. Further refinement of the catalytic
structure and extension of the utility of the new method-
ology to synthetically relevant organic processes are
under active investigation.
9
. Representative experimental procedure for the aldol reac-
tion: To a stirred mixture of 2 (302 mg, 2 mmol), 1
(
(
20 mmol) and water (3 mL), prolinamideÆHBr (4)
20 mol %) was added. The reaction was monitored by
Acknowledgements
TLC. The reaction was quenched with saturated ammo-
nium chloride solution and extracted with CH Cl . The
organic layer was dried over anhydrous Na SO and
2
2
S.S.C. thanks CSIR, India, for financial support (Re-
search grant No. 01/1878/03/EMR-II). DM thanks
UGC, India, for a junior research fellowship. The
support of Dr. S. C. Taneja and Dr. K. N. Singh is
gratefully acknowledged.
2
4
distilled to obtain the crude product. Column chromato-
graphy of the crude on silica gel (60–120 mesh) using a
mixture of ethyl acetate and hexane in varying proportions
6
as eluent, gave pure product 3. The enantiomeric excess
of 3 was determined on HPLC using a Chiralpak AS-H
column (IPA/hexane; 3:7).
1
0. On the refereeꢁs suggestion, the reaction of 1 and 2 was
performed in the presence of proline and HBr. Running
the reaction for 24 h did not yield any product.
References and notes
1
. (a) Dalko, P. I.; Moissan, L. Angew. Chem., Int. Ed. 2001,
11. (a) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem.
Soc. 2000, 122, 2395–2396; (b) List, B.; Notz, W. J. Am.
Chem. Soc. 2000, 122, 7386–7387; (c) Northrup, A. B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798–
6799; (d) Sakthivel, K.; Notz, W.; Bui, T.; Zhong, G.;
Barbas, C. F., III J. Am. Chem. Soc. 2001, 123, 5260–5267.
12. Miller, S. J. Acc. Chem. Res. 2004, 8, 601.
40, 3726–3748; (b) List, B. Tetrahedron 2002, 58, 5573–
5590; (c) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58,
2481–2495; (d) Schreiner, P. R. Chem. Soc. Rev. 2003, 32,
289–296; (e) Franc, S.; Guerin, D. J.; Millar, S. J.; Leckta,
T. Chem. Rev. 2003, 103, 2985–3012; (f) Dalko, P. I.;
Moissan, L. Angew. Chem., Int. Ed. 2004, 43, 5123–5175;