56
P. Bhowmik et al. / Inorganic Chemistry Communications 18 (2012) 50–56
(
b) A. Gutberlet, G. Schwaab, O. Birer, M. Masia, A. Kaczmarek, H. Forbert, M.
Havenith, D. Marx, Aggregation-Induced Dissociation of HCl(H O) Below 1
K: The Smallest Droplet of Acid, Science 324 (2009) 1545–1548.
[35] F. Yuksel, Y. Chumakov, D. Luneau, The chiral Zn(II)–Na(I) coordination polymer:
2
4
Synthesis, crystal structure, thermal and optical properties, Inorg. Chem.
Commun. 11 (2008) 749–753.
[
[
16] L. Infantes, S. Motherwell, Water clusters in organic molecular crystals, CrystEng-
Comm 4 (2002) 454–461.
17] R. Custelcean, C. Afloroaei, M. Vlassa, M. Polverejan, Formation of extended tapes
of cyclic water hexamer in a organic molecular crystal host, Angew. Chem. Int. Ed.
[36] (a) M.E. Bluhm, M. Ciesielski, H. Gorls, O. Walter, M. Doring, Complexes of Schiff
bases and intermediates in the copper-catalyzed oxidative heterocyclization
by atmospheric oxygen, Inorg. Chem. 42 (2003) 8878–8885;
4 2
(b) C. Nather, J. Greve, I. Jess, Poly[di-μ -acetato-di-μ -azido-copper(II)diso-
3
9 (2000) 3094–3096.
dium(I)] at 150 K, Acta Crystallogr., Sect. E: Struct. Rep. Online 61 (2005)
m314–m316;
(c) B. Kozlevcar, A. Golobic, P. Gamez, I.A. Koval, W.L. Driessen, J. Reedijk, A
tridentate bis(pyrazolyl) ligand binds to Cu(II), without using the pyrazole
[
18] S. Pal, N.B. Sankaran, A. Samanta, Structure of a self-assembled chain of water
molecules in a crystal host, Angew. Chem. Int. Ed. 42 (2003) 1741–1743.
19] L. Infantes, J. Chisholm, S. Motherwell, Extended motifs from water and chemical
[
functional groups in organic molecular crystals, CrystEngComm
80–486.
20] A.M. Voutchkova, L.N. Appelhans, A.R. Chianese, R.H. Crabtree, Disubstituted
imidazolium-2-carboxylates as efficient precursors to N-heterocyclic carbene
complexes of Rh, Ru, Ir, and Pd, J. Am. Chem. Soc. 127 (2005) 17624–17625.
21] T. Steiner, Water molecules which apparently accept no hydrogen bonds are
5
(2003)
group: a very unusual coordination mode of the ligand Hbdmpb, 1,3-
bis(3,5-dimethylpyrazol-1-yl)-2-butanoic acid, Inorg. Chim. Acta 358
(2005) 1135–1140;
4
[
(d) A.C. Warden, M.T.W. Hearn, L. Spiccia, Novel acetate binding modes in [Na2-
3 4 2 2
Cu(CH COO) (H O)]·H O, Inorg. Chem. 42 (2003) 7037–7040;
[
(e) C.-D. Wu, C.-Z. Lu, W.-B. Yang, H.-H. Zhuang, J.-S. Huang, A three-dimentional
framework of dimeric copper(II) acetate linked by coordinated sodium cat-
ions, Inorg. Chem. Commun. 4 (2001) 504–506.
systematically involved in C–H⋯O interactions, Acta Crystallogr., Sect.
1995) 93–97.
22] CSD search file 1.pdf (Supporting Information).
23] The Schiff base ligand, H vanpn, was synthesized by refluxing 1,3-diaminopro-
D 51
(
[
[
[37] CSD search file 2.pdf (Supporting Information).
2
[38] Hirshfeld surfaces [42–44] and the associated 2D-fingerprint [45–47] plots were
calculated using Crystal Explorer [48], which accepts a structure input file in CIF
format. Bond lengths to hydrogen atoms were set to standard values. For each
pane (10 mmol, 0.84 mL) with 3-methoxysalicyldehyde (20 mmol, 3.04 g) in
methanol (20 ml) for ca. 1 h. To prepare the complex, a methanol solution of
copper(II) acetate monohydrate (1 mmol, 0.2 g) was added to the methanol solu-
point on the Hirshfeld isosurface, two distances d
to the nearest nucleus external to the surface and d
e
, the distance from the point
, the distance to the nearest
tion of H
acetate (1 mmol, 0.085 g) in methanol was then added to it and stirred for
5 mins. A green colored complex was precipitated out and was recrystallized
from acetonitrile solution to obtain prismatic dark green single crystals suitable
for X-ray diffraction. Yield: 0.34 g (61%). Anal. Calc. for C22 32CuN NaO (540):
2
vanpn (1 mmol, 0.342 g) and refluxed for 1 hr. A solution of sodium
i
nucleus internal to the surface, are defined. The normalized contact distance
vdw
i
vdw
ðdi−r
Þ
ðde −re Þ where rvdw
1
(d
norm) based on de and d
vdw
i
is given by dnorm ¼
vdw
þ
vdw
i
r
re
i
and r
e
are the van der Waals radii of the atoms. The value of dnorm is negative
H
2
9
or positive depending on intermolecular contacts being shorter or longer than the
van der Waals separations. The parameter dnorm displays a surface with a red-
white-blue color scheme, where bright red spots highlight shorter contacts
white areas represent contacts around the van der Waals separation, and blue
regions are devoid of close contacts. For a given crystal structure and set of spher-
ical atomic electron densities, the Hirshfeld surface is unique [49], and it is the
property that suggests the possibility of gaining additional insight into the inter-
molecular interaction of molecular crystals.
C, 40.40; H, 5.04; N, 4.32; Found: C, 40.3; H, 4.9; N, 4.4; UV–Vis, λmax(nm)
3
−1
−1
(ε
max (dm mol
cm )) (acetonitrile), 565 (130), 366 (4355), Magnetic
moment=1.74 BM.
[
24] A crystal of dimensions 0.34×0.32×0.14 mm3 was mounted in inert oil and
transferred to the cold gas stream of the cooling device. Data have been collected
at 193 K on a STOE IPDS diffractometer using graphite monochromated Mo-
Kαradiation and corrected for absorption using indexed faces. Programs used:
SIR92 — A program for crystal structure solution. A. Altomare, G. Cascarano, C.
Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 1993, 26, 343–350. SHELXL-97 —
A program for crystal structure refinement. G. M. Sheldrick, Acta Cryst., 2008,
[
39] P. Bhowmik, S. Chattopadhyay, M.G.B. Drew, C. Diaz, A. Ghosh, Synthesis, struc-
ture and magnetic properties of mono- and di-nuclear nickel(II) thiocyanate
complexes with tridentate N3 donor Schiff bases, Polyhedron 29 (2010)
A64, 112–122. Crystal data: Fw-539.99; monoclinic, P2 /c, a=11.4435(8),
1
−
3
b=8.7183(6), c=23.3113(17) Å, β=92.062(8)°,dcalc (g cm )=1.543, F(000)
1124, Z=4. 334 parameters were fit to 4052 unique reflections to give R1,
2637–2642.
=
[
40] S.K. Ghosh, P.K. Bharadwaj, Octameric water clusters of staircase structure
present in a metal-organic framework built from helical lanthanide coordination
polymers, Eur. J. Inorg. Chem. (2005) 4886–4889.
41] D.H. Evans, K.M. O'Connell, R.A. Petersen, M.J. Kelly, Cyclic voltammetry, J. Chem.
Educ. 60 (1983) 290–293.
42] M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis, CrystEngComm 11
wR2 [I>2 σ (I)]=0.0295, 0.0606.
[
[
[
25] P. Bhowmik, H.P. Nayek, M. Corbella, N. Aliaga-Alcalde, S. Chattopadhyay, Control
of molecular architecture by steric factors: mononuclear vs polynuclear manga-
[
[
[
[
nese(III) compounds with tetradentate N
0 (2011) 7916–7926.
2 2
O donor Schiff bases, Dalton Trans.
4
26] S. Thakurta, J. Chakraborty, G. Rosair, R.J. Butcher, S. Mitra, The interplay of O–
H⋯O hydrogen bonding in the generation of three new supramolecular
(2009) 19–32.
43] F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities,
Theor. Chim. Acta 44 (1977) 129–138.
44] H.F. Clausen, M.S. Chevallier, M.A. Spackman, B.B. Iversen, Three new co-crystals
of hydroquinone: crystal structures and Hirshfeld surface analysis of intermole-
cular interactions, New J. Chem. 34 (2010) 193–199.
45] A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. McKinnon, B. Kahr, Hirshfeld
surfaces identify inadequacies in computations of intermolecular interactions in
crystals: pentamorphic 1,8-dihydroxyanthraquinone, Cryst. Growth Des.
II
II
III
complexes of Cu , Ni and Co
: syntheses, characterization and structural
aspects, Inorg. Chim. Acta 362 (2009) 2828–2836.
27] S. Thakurta, C. Rizzoli, R.J. Butcher, C.J. Gómez-García, E. Garribba, S. Mitra, Sterically-
controlled nuclearity in new copper(II) complexes with di-compartmental ligands:
formation of antiferromagnetically coupled angular trimer and mononuclear inclu-
sion complex, Inorg. Chim. Acta 363 (2010) 1395–1403.
28] D. Cramer, J.A. Pople, General definition of ring puckering coordinates, J. Am.
Chem. Soc. 97 (1975) 1354–1358.
29] M.S. Ray, R. Bhattacharya, S. Chaudhuri, L. Right, G. Boceli, G. Mukhopadhyay, A.
Ghosh, Synthesis, characterisation and X-ray crystal structure of copper(II)
complexes with unsymmetrical tetradentate Schiff base ligands: first evidence
of Cu(II) catalysed rearrangement of unsymmetrical to symmetrical complex,
Polyhedron 22 (2003) 617–624.
[
[
8
(2008) 4517–4525.
[
[
46] A. Parkin, G. Barr, W. Dong, C.J. Gilmore, D. Jayatilaka, J.J. McKinnon, M.A. Spackman,
C.C. Wilson, Comparing entire crystal structures: structural genetic fingerprinting,
CrystEngComm 9 (2007) 648–652.
47] M.A. Spackman, J.J. McKinnon, Fingerprinting intermolecular interactions in
molecular crystals, CrystEngComm 4 (2002) 378–392.
48] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Crystal
49] J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Novel tools for visualizing and
exploring intermolecular interactions in molecular crystals, Acta Crystallogr.,
Sect. B 60 (2004) 627–668.
[
[
[
[
[
[
30] T. Head-Gordon, G. Hura, Water structure from scattering experiments and
[
simulation, Chem. Rev. 102 (2002) 2651–2670.
31] W.F. Kuhs, M.S. Lehman, The structure of the ice Ih by neutron diffraction, J. Phys.
Chem. 87 (1983) 4312–4313.
[
i
32] The corresponding oxygen atoms are representated as O(101) and O(101 ) in
Figure 5.
33] G.R. Desiraju, Hydration in organic crystals: prediction from molecular structure,
J. Chem. Soc. Chem. Commun. (1991) 426–428.
34] M.T. Ng, T.C. Deivaraj, W.T. Klooster, G.J. McIntyre, J.J. Vittal, Hydrogen-bonded
2 2
polyrotaxane-like structure containing cyclic (H O)4 in [Zn(OAc)2(m-bpe)]·2H O:
X-ray and neutron diffraction studies, Chem. Eur. J. 10 (2004) 5853–5859.