10.1002/asia.201900496
Chemistry - An Asian Journal
COMMUNICATION
[24] S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii,
K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2016, 7, 12181.
[25] Y. Sekiguchi, S. Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, Y.
Nishibayashi, Chem. Commun. 2017, 53, 12040.
The present project is supported by CREST, JST (JPMJCR1541).
We acknowledge Grants-in-Aids for Scientific Research (Nos.
JP17H01201, JP15H05798, JP18K19093 and JP18K05148) from
JSPS and MEXT. A.E. is a recipient of the JSPS Predoctoral
Fellowships for Young Scientists. We also thank the Research
Hub for Advanced Nano Characterization at The University of
Tokyo for X-ray analysis.
[26] S. Kuriyama, K. Arashiba, H. Tanaka, Y. Matsuo, K. Nakajima, K.
Yoshizawa, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 14291.
[27] J. Fajardo, J. C. Peters, J. Am. Chem. Soc. 2017, 139, 16105.
[28] Y. Sekiguchi, K. Arashiba, H. Tanaka, A. Eizawa, K. Nakajima, K.
Yoshizawa, Y. Nishibayashi, Angew. Chem. Int. Ed. 2018, 57, 9064.
[29] L. R. Doyle, A. J. Wooles, L. C. Jenkins, F. Tuna, E. J. L. McInnes, S. T.
Liddle, Angew. Chem. Int. Ed. 2018, 57, 6314.
Keywords: Nitrogen fixation • Molybdenum complex • N-
[30] K. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem. 2011, 3, 120.
[31] H. Tanaka, K. Arashiba, S. Kuriyama, A. Sasada, K. Nakajima, K.
Yoshizawa, Y. Nishibayashi, Nat. Commun. 2014, 5, 3737.
heterocyclic carbene • Pincer ligands • Halide ligand
[1]
H. Liu, Ammonia Synthesis Catalysts: Innovation and Practice (World
Scientific, 2013).
[32] S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, N. Kamaru, K.
Yoshizawa, Y. Nishibayashi, J. Am. Chem. Soc. 2014, 136, 9719.
[33] S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, Y.
Nishibayashi, Chem. Sci. 2015, 6, 3940.
[2]
[3]
R. R. Eady, Coord. Chem. Rev. 2003, 237, 23.
B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, L. C. Seefeldt,
Chem. Rev. 2014, 114, 4041.
[34] A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima,
K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2017, 8, 14874.
[35] K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, Y.
Nishibayashi, Bull. Chem. Soc. Jpn. 2017, 90, 1111.
[4]
[5]
T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. A. Andrade, E. Schleicher, S.
Weber, D. C. Rees, O. Einsle, Science 2011, 334, 940.
K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F.
Neese, U. Bergmann, S. DeBeer, Science 2011, 334, 974.
J. A. Wiig, Y. Hu, C. C. Lee, M. W. Ribbe, Science 2012, 337, 1672.
D. Sippel, O. Einsle, Nat. Chem. Biol. 2017, 13, 956.
M. Hidai, Y. Mizobe, Chem. Rev. 1995, 95, 1115.
[36] We consider that ligand exchange between chloride ligand on
[MoCl3(PCP[1])] 2d and iodide ligand of NaI easily occurs in the presence
[6]
[7]
[8]
[9]
of CoCp*2 as a reductant.
In fact, the formation of [MoI2(PCP[1])]
species was observed from the reaction of [MoCl3(PCP[1])] 2d with 3
equiv of NaI in the presence of 2 equiv of CoCp*2 in toluene at room
temperature under argon atmosphere. ESI-TOF-MS analysis revealed
that [MoI2(PCP[1])] species were formed from the reaction mixture. In
contrast, no ligand exchange occurred at all in the absence of CoCp*2
under the same reaction conditions.
B. A. MacKay, M. D. Fryzuk, Chem. Rev. 2004, 104, 385.
[10] N. Khoenkhoen, B. de Bruin, J. N. H. Reek, W. I. Dzik, Eur. J. Inorg.
Chem. 2015, 567.
[11] a) Y. Nishibayashi Ed. Nitrogen Fixation –Topics in Organometallic
Chemistry (Springer, 2017); b) Y. Nishibayashi Ed. Transition Metal-
Dinitrogen Complexes (Wiely-VCH, 2019).
[37] a) It is well known that iodide worked as an electron-donating group than
chloride when halogens are presented in organic compounds. In sharp
contrast to the property of halogens in organic compounds, iodide ligand
worked as an electron-withdrawing group than chloride when halogens
are presented as ligands in transition metal complexes; b) S. A. DiFranco,
N. A. Maciulis, R. J. Staples, Rami. J. Batrice, A. L. Odom, Inorg. Chem.
2012, 51, 1187; c) R. D. Bemowski, A. K. Singh, B. J. Bajorek, Y. DePorre,
A. L. Odom, Dalton Trans. 2014, 43, 12299.
[12] D. V. Yandulov, R. R. Schrock, Science 2003, 301, 76.
[13] V. Ritleng, D. V. Yandulov, W. W. Weare, R. R. Schrock, A. S. Hock, W.
M. Davis, J. Am. Chem. Soc. 2004, 126, 6150.
[14] R. R. Schrock, Acc. Chem. Res. 2005, 38, 955.
[15] R. R. Schrock, Angew. Chem. Int. Ed. 2008, 47, 5512.
[16] J. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84.
[17] S. E. Creutz, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 1105.
[18] G. Ung, J. C. Peters, Angew. Chem. Int. Ed. 2015, 54, 532.
[19] J. Rittle, J. C. Peters, Proc. Natl Acad. Sci. USA 2013, 110, 15898.
[20] J. Rittle, C. C. L. McCrory, J. C. Peters, J. Am. Chem. Soc. 2014, 136,
13853.
[38] T. Itabashi, I. Mori, K. Arashiba, A. Eizawa, K. Nakajima, Y. Nishibayashi,
Dalton Trans. 2019, 48, 3182.
[39] Separately we found that employment of 2b as a catalyst shows almost
the same time profile as a mixture of 2d and 3 equiv of sodium iodide
(See supporting Information).
[21] J. Rittle, J. C. Peters, J. Am. Chem. Soc. 2016, 138, 4243.
[22] T. J. Del Castillo, N. B. Thompson, J. C. Peters, J. Am. Chem. Soc. 2016,
138, 5341.
[40]
In this paper, we have defined the best catalyst from viewpoints of
ammonia production and the rate of ammonia formation under the same
reaction conditions although there are many factors to determine the best
catalyst.
[23] P. J. Hill, L. R. Doyle, A. D. Crawford, W. K. Myers, A. E. Ashley, J. Am.
Chem. Soc. 2016, 138, 13521.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.