LIU ET AL.
5
REFERENCES
[
[
[
[
1] S. Y. Assaf, S. H. Chung, Nature 1984, 308, 734.
2] H. Scherz, E. Kirchhoff, J. Food, Compos. Anal. 2006, 19, 420.
3] B. L. Vallee, K. H. Falchuk, Physiol. Rev. 1993, 73, 79.
4] A. I. Bush, W. H. Pettingell, G. Multhaup, M. D. Paradis, J. P. Vonsattel,
J. F. Gusella, K. Beyreuther, C. L. Masters, R. E. Tanzi, Science 1994,
2
65, 1464.
[
[
5] P. J. Fraker, L. E. King, Annu. Rev. Nutr. 2004, 24, 277.
6] J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu, D. W. Choi, Science
1
996, 272, 1013.
[
[
[
7] R. L. Dutra, H. F. Maltez, C. Eduardo, Talanta 2006, 69, 488.
8] Q. Li, X. Zhao, Q. Lv, Sep. Purif. Technol. 2007, 55, 76.
9] P. Wilhartitz, S. Dreer, R. Krismer, O. Bobleter, Microchim. Acta 1997,
1
25, 45.
[
[
[
[
[
[
[
10] Z. Yan, J. N. Newton, L. Jie, W. Alexander, Langmuir 2009, 25, 13833.
11] L. M. Hee, K. Jong Seung, J. L. Sessler, Chem. Soc. Rev. 2015, 44, 4185.
12] K. Li, X. Wang, A. Tong, Anal. Chim. Acta 2013, 776, 69.
2
+
FIGURE
5
Fluorescence intensity of 1 as a function of Zn
concentration (0.6–6.0 μmol/L). Conditions: [1] = 20 μmol/L, 99%
water/DMSO (v/v) at pH 7.0 buffered by 10 mmol/L Tris–HCl.
Excitation and emission was at 395 nm and 484 nm, respectively
13] D. R. Rice, K. J. Clear, B. D. Smith, Chem. Commun. 2016, 52, 8787.
14] F. Zhao, Q. Fan, H. Cai, Luminescence 2014, 29, 219.
15] H. Y. Lin, T. Y. Chen, C. K. Liu, A. T. Wu, Luminescence 2016, 31, 236.
16] L. Na, W. Tang, X. Yu, A. Tong, P. Jin, J. Yong, Luminescence 2010, 25,
acidic solutions, 1 protonated its pyridine unit which weakened the
binding ability with Zn . In alkaline solution, the combination of OH˗
4
45.
2+
[
17] J. C. Qin, L. Fan, Z. Y. Yang, Sensor. Actuat, B‐Chem. 2016, 228, 156.
18] Z. Yang, M. She, B. Yin, L. Hao, M. Obst, P. Liu, J. Li, Anal. Chim. Acta
2
+
with Zn decreased the fluorescence of 1–Zn. For the sake of achiev-
[
2+
ing the highest signal‐to‐noise ratio, pH 7.0 was used for Zn detec-
tion in the experiment. Similar optimal conditions of pH 7.0 could
also be found in compounds 2 and 3 (Figures S6 and S7).
2
015, 868, 53.
[
[
[
19] X. Zhang, H. Li, G. Liu, S. Pu, Luminescence 2016, 31, 1488.
20] Y. Zhao, J. Sun, Z. Shi, C. Pan, M. Xu, Luminescence 2011, 26, 214.
21] N. Roy, H. A. R. Pramanik, P. C. Paul, T. S. Singh, Spectrochim. Acta A
2
015, 140, 150.
3
.4
|
Analytical figures of merit
[
22] K. Tayade, S. K. Sahoo, B. Bondhopadhyay, V. K. Bhardwaj, N.
2+
The calibration curves for the determination of Zn by 1 were
established in the optimum condition of 99% water/DMSO (v/v) at
pH 7.0 buffered by 10 mmol/L Tris–HCl (Figure 5). Compound 1
Singh, A. Basu, R. Bendre, A. Kuwar, Biosens. Bioelectron. 2014,
6
1, 429.
23] Y. Tang, Y. Ding, X. Li, H. Ågren, T. Li, W. Zhang, Y. Xie, Actuat, B‐Chem.
015, 206, 291.
24] Z. Q. Mao, L. Hu, X. H. Dong, C. Zhong, B.‐F. Liu, Z. H. Liu, Anal. Chem.
014, 86, 6548.
[
[
[
2
2+
displayed a linear range of 0.6 to 6.0 μmol/L for Zn detection with
2
correlation coefficient of R = 0.988 (n = 3). 0.17 μmol/L was computed
2
as the detection limit based on the definition by IUPAC (CDL = 3S
b
/m)
25] C. J. Lim, J. Y. Choi, B. H. Lee, K. S. Oh, K. Y. Yi, Chem. Pharm. Bull.
2013, 61, 1239.
from 10 blank solutions. The relative standard deviation (n = 3) was
2+
0
.2% at 3 μmol/L Zn . The corresponding calibration curves of control
[26] J. S. Wu, W. M. Liu, X. Q. Zhuang, F. Wang, P. F. Wang, S. L. Tao, X. H.
Zhang, S. K. Wu, S. T. Lee, Org. Lett. 2007, 9, 33.
compounds 2 and 3 were dispiayed in Figures S8 and S9. The detection
limits were 0.16 μmol/L and 0.24 μmol/L while the linear ranges were
[
27] E. U. Akkaya, M. E. Huston, A. W. Czarnik, J. Am. Chem. Soc. 1990, 112,
590.
3
0
.4–4.0 μmol/L and 0.2–2.0 μmol/L, respectively.
[
[
28] L. Zhang, L. Zhu, J. Org. Chem. 2008, 73, 8321.
29] A. W. Varnes, R. B. Dodson, E. L. Wehry, J. Am. Chem. Soc. 1972,
9
4, 946.
4
|
CONCLUSION
In conclusion, we have prepared a series of naphthaldehyde‐2‐
SUPPORTING INFORMATION
2+
pyridinehydrazone derivatives fluorescent chemosensors for Zn
Additional Supporting Information may be found online in the
supporting information tab for this article.
detection in aqueous solution at neutral pH. As a sensitive and
2+
selective fluorescent chemosensor for Zn , 1 displayed the detection
2+
limit of 0.17 μmol/L toward Zn with a linear range of 0.6 to
6
.0 μmol/L. Especially, when other physiological relevant metal ions
2+
2+
including Cd existed, 1 also showed excellent selectivity to Zn
.
How to cite this article: Liu Y, Li Y, Feng Q, et al. ‘Turn‐on’
fluorescent chemosensors based on naphthaldehyde‐2‐
ACKNOWLEDGEMENT
The authors are very grateful for the financial support from the
National Natural Science Foundation of China (No. 51502079,
2
1501150, 21371155).