Page 7 of 9
Journal of the American Chemical Society
(d) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc.
2011, 133, 13445.
(4) Kong, X.; Deng, H.; Yan, F.; Kim, J.; Swisher, J. A.; Smit, B.;
Yaghi, O. M.; Reimer, J. A. Science 2013, 341, 882.
built from a 2D kdg layer, which consists of Zr6 clusters and
1
2
3
4
5
6
7
8
BTBs as the primary linkers, supported by auxiliary DCDPS
or TCPP linkers. PCNꢀ134 exhibits high porosity and excelꢀ
lent chemical stability in aqueous solutions with pH scale
ranges from 0 to 13. More importantly, the mixedꢀlinker Zrꢀ
MOF, PCNꢀ134, has significant tolerance of partial auxiliaryꢀ
linker absence during the assembly process, leading to a high
density of structural defects while preserving the overall strucꢀ
ture. In addition, the defect density can be systematically
tuned by adjusting the linker ratios, which in turn alters the
properties of PCNꢀ134. For instance, PCNꢀ134ꢀ25%TCPP
exhibits the highest nitrogen uptake and PCNꢀ134ꢀ22%TCPP
(5) (a) Ma, B.ꢀQ.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2005,
44, 4912. (b) Koh, K.; WongꢀFoy, A. G.; Matzger, A. J. Angew.
Chem., Int. Ed. 2008, 47, 677. (c) Doonan, C. J.; Morris, W.; Furukaꢀ
wa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 9492. (d) Fuꢀ
rukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.;
Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M.
Science 2010, 329, 424.
(6) (a) Liu, L.; Konstas, K.; Hill, M. R.; Telfer, S. G. J. Am. Chem.
Soc. 2013, 135, 17731. (b) Liu, L.; Telfer, S. G. J. Am. Chem. Soc.
2015, 137, 3901.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
2–
exhibits the highest Cr2O7 absorbance compared with those
(7) (a) Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem., Int. Ed.
2004, 43, 5033. (b) Fukushima, T.; Horike, S.; Inubushi, Y.; Nakagaꢀ
wa, K.; Kubota, Y.; Takata, M.; Kitagawa, S. Angew. Chem., Int. Ed.
2010, 49, 4820. (c) Chevreau, H.; Devic, T.; Salles, F.; Maurin, G.;
Stock, N.; Serre, C. Angew. Chem., Int. Ed. 2013, 52, 5056.
(8) (a) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilꢀ
sen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chem. Mater.
2011, 23, 1700. (b) Deria, P.; Bury, W.; Hupp, J. T.; Farha, O. K.
Chem. Commun. 2014, 50, 1965. (c) Furukawa, H.; Gándara, F.;
Zhang, Y.ꢀB.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M.
J. Am. Chem. Soc. 2014, 136, 4369. (d) Cliffe, M. J.; Wan, W.; Zou,
X.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.; Wilhelm, H.; Funꢀ
nell, N. P.; Coudert, F.ꢀX.; Goodwin, A. L. Nat. Commun. 2014, 5,
4176.
(9) (a) Feng, D.; Gu, Z.ꢀY.; Li, J.ꢀR.; Jiang, H.ꢀL.; Wei, Z.; Zhou,
H.ꢀC. Angew. Chem., Int. Ed. 2012, 51, 10307. (b) Feng, D.; Chung,
W.ꢀC.; Wei, Z.; Gu, Z.ꢀY.; Jiang, H.ꢀL.; Chen, Y.ꢀP.; Darensbourg, D.
J.; Zhou, H.ꢀC. J. Am. Chem. Soc. 2013, 135, 17105. (c) Jiang, H.ꢀL.;
Feng, D.; Wang, K.; Gu, Z.ꢀY.; Wei, Z.; Chen, Y.ꢀP.; Zhou, H.ꢀC. J.
Am. Chem. Soc. 2013, 135, 13934.
(10) (a) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen,
P.; Yildirim, T.; Zhou, W. J. Am. Chem. Soc. 2013, 135, 10525. (b)
Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti,
C.; Lillerud, K. P. Cryst. Growth Des. 2014, 14, 5370.
(11) Yuan, S.; Lu, W.; Chen, Y.ꢀP.; Zhang, Q.; Liu, T.ꢀF.; Feng,
D.; Wang, X.; Qin, J.; Zhou, H.ꢀC. J. Am. Chem. Soc. 2015, 137,
3177.
(12) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti,
C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
(13) (a) Wang, R.; Wang, Z.; Xu, Y.; Dai, F.; Zhang, L.; Sun, D.
Inorg. Chem. 2014, 53, 7086. (b) Ma, J.; WongꢀFoy, A. G.; Matzger,
A. J. Inorg. Chem. 2015, 54, 4591.
(14) (a) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.;
Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. (b) Katz, M.
J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.;
Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449.
(15) Feng, D.; Gu, Z.ꢀY.; Chen, Y.ꢀP.; Park, J.; Wei, Z.; Sun, Y.;
Bosch, M.; Yuan, S.; Zhou, H.ꢀC. J. Am. Chem. Soc. 2014, 136,
17714.
(16) Hou, J.ꢀJ.; Zhang, R.; Qin, Y.ꢀL.; Zhang, X.ꢀM. Cryst. Growth
Des. 2013, 13, 1618.
(17) Blatov, V. A. TOPOS 4.0 Professional, Commission on Crysꢀ
tallographic Computing, IUCr, 2006.
(18) Feng, D.; Wang, K.; Su, J.; Liu, T. F.; Park, J.; Wei, Z.; Bosch,
M.; Yakovenko, A.; Zou, X.; Zhou, H.ꢀC. Angew. Chem., Int. Ed.
2015, 54, 149.
(19) Liu, T.ꢀF.; Feng, D.; Chen, Y.ꢀP.; Zou, L.; Bosch, M.; Yuan,
S.; Wei, Z.; Fordham, S.; Wang, K.; Zhou, H.ꢀC. J. Am. Chem. Soc.
2015, 137, 413.
(20) (a) Guillerm, V.; Weseliński, Ł. J.; Belmabkhout, Y.; Cairns,
A. J.; D’Elia, V.; Wojtas, Ł.; Adil, K.; Eddaoudi, M. Nature Chem.
2014, 6, 673. (b) Xue, D.ꢀX.; Belmabkhout, Y.; Shekhah, O.; Jiang,
H.; Adil, K.; Cairns, A. J.; Eddaoudi, M. J. Am. Chem. Soc. 2015, 137,
5034. (c) Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue,
D.ꢀX.; Jiang, H.; Eddaoudi, M. Angew. Chem., Int. Ed. 2015, 54,
14353. (d) Alezi, D.; Peedikakkal, A. M. P.; Weseliński, Ł. J.;
Guillerm, V.; Belmabkhout, Y.; Cairns, A. J.; Chen, Z.; Wojtas, Ł.;
Eddaoudi, M. J. Am. Chem. Soc. 2015, 137, 5421.
of other TCPP molar ratios in PCNꢀ134 system. Furthermore,
PCNꢀ134ꢀ22%TCPP exhibits excellent photocatalytic activity
toward the reduction of dichromate in aqueous solution under
visible light irradiation. Apart from providing two new mixedꢀ
linker ZrꢀMOFs, the strategy developed herein shall lead to a
facile synthesis of a stable ZrꢀMOF with a controllable defect
density, which should extend the application of MOF materiꢀ
als in the near future.
ASSOCIATED CONTENT
Supporting Information. This material is available free of
AUTHOR INFORMATION
Corresponding Author
*zhou@chem.tamu.edu
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
The gas adsorptionꢀdesorption studies of this research was supꢀ
ported by the Center for Gas Separations Relevant to Clean Enerꢀ
gy Technologies, an Energy Frontier Research Center funded by
U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences under Award Number DEꢀSC0001015. Structurꢀ
al analyses were supported as part of the Hydrogen and Fuel Cell
Program under Award Number DEꢀEEꢀ0007049. S. Yuan also
acknowledges the Texas A&M Energy Institute Graduate Fellowꢀ
ship Funded by ConocoPhillips. S. Yuan would also like to thank
Ms. Shanshan Liu for proofreading and helpful discussion.
REFERENCES
(1) (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. (b) Zhou, H. C.; Long,
J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. (c) Cohen, S. M.
Chem. Rev. 2012, 112, 970. (d) Yoon, M.; Srirambalaji, R.; Kim, K.
Chem. Rev. 2012, 112, 1196. (e) Furukawa, H.; Cordova, K. E.;
O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. (f) Li, M.;
Li, D.; O’Keeffe, M.; Yaghi, O. M. Chem. Rev. 2014, 114, 1343. (g)
Chen, Y.ꢀP.; Liu, T.ꢀF.; Fordham, S.; Zhou, H.ꢀC. Acta Crystallogr.,
Sect. B: Struct. Sci. 2015, B71, 613.
(2) (a) Furukawa, H.; Müller, U.; Yaghi, O. M. Angew. Chem. Int.
Ed. 2015, 54, 3417. (b) Tu, B.; Pang, Q.; Ning, E.; Yan, W.; Qi, Y.;
Wu, D.; Li, Q. J. Am. Chem. Soc. 2015, 137, 13456.
(3) (a) Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Chem. Eur. J.
2005, 11, 3521. (b) Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira,
R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Science
2010, 327, 846. (c) Burrows, A. D. CrystEngComm 2011, 13, 3623.
7
ACS Paragon Plus Environment