Characterization of SfmD as a Heme-containing Peroxidase
1669–1730
version of heme to bilirubin by microsomal heme oxygenase. Proc. Natl.
2. Arai, T., Takahashi, K., and Kubo, A. (1977) New antibiotics saframycins
A, B, C, D, and E. J. Antibiot. 30, 1015–1018
Acad. Sci. U.S.A. 61, 748–755
21. Smith, W. L., and Marnett, L. J. (1991) Prostaglandin endoperoxide syn-
thase: structure and catalysis. Biochim. Biophys. Acta 1083, 1–17
3. Cuevas, C., and Francesch, A. (2009) Development of Yondelis (trabect-
edin, ET-743). A semisynthetic process solves the supply problem. Nat. 22. Sheoran, A., King, A., Velasco, A., Pero, J. M., and Garneau-Tsodikova, S.
Prod. Rep. 26, 322–337
(2008) Characterization of TioF, a tryptophan 2,3-dioxygenase involved in
3-hydroxyquinaldic acid formation during thiocoraline biosynthesis. Mol.
Biosyst. 4, 622–628
4. Mikami, Y., Takahashi, K., Yazawa, K., Arai, T., Namikoshi, M., Iwasaki, S.,
and Okuda, S. (1985) Biosynthetic studies on saframycin A, a quinone
antitumor antibiotic produced by Streptomyces lavendulae. J. Biol. Chem. 23. Huff, A. M., Chang, C. K., Cooper, D. K., Smith, K. M., and Dawson, J. H.
260, 344–348
(1993) Imidazole- and alkylamine-ligated iron (II, III) chlorin complexes
as models for histidine and lysine coordination to iron in dihydroporphy-
rin-containing proteins: characterization with magnetic circular dichro-
ism spectroscopy. Inorg. Chem. 32, 1460–1466
5. Palaniswamy, V. A., and Gould, S. J. (1986) The incorporation of 3Ј-meth-
yltyrosine and 5Ј-methyl DOPA into naphthyridinomycin. J. Am. Chem.
Soc. 108, 5651–5652
6. Li, L., Deng, W., Song, J., Ding, W., Zhao, Q.-F., Peng, C., Song, W.-W., 24. Sugano, Y. (2009) DyP-type peroxidases comprise a novel heme peroxi-
Tang, G.-L., and Liu, W. (2008) Characterization of the saframycin A gene
dase family. Cell. Mol. Life Sci. 66, 1387–1403
cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribo- 25. Sono, M., Roach, M. P., Coulter, E. D., and Dawson, J. (1996) Heme-
somal peptide synthetase system for assembling the unusual tetrapeptidyl
skeleton in an iterative manner. J. Bacteriol. 190, 251–263
containing Oxygenases. Chem. Rev. 96, 2841–2888
26. Poulos, T. L. (2010) Thirty years of heme peroxidase structural biology.
Arch. Biochem. Biophys. 500, 3–12
7. Velasco, A., Acebo, P., Gomez, A., Schleissner, C., Rodríguez, P., Aparicio,
T., Conde, S., Muñoz, R., de la Calle, F., Garcia, J. L., and Sánchez-Puelles, 27. Palmer, G. (1983) in Iron Porphyrins: Part II (Lever, A. B. P., and Gray,
J. M. (2005) Molecular characterization of the safracin biosynthetic path-
H. B., eds) pp. 43–88, Addison-Wesley, Reading, MA
way from Pseudomonas fluorescens A2–2: designing new cytotoxic com- 28. Khindaria, A., and Aust, S. D. (1996) EPR detection and characterization of
pounds. Mol. Microbiol. 56, 144–154
lignin peroxidase porphyrin pi-cation radical. Biochemistry 35,
8. Fu, C. Y., Tang, M. C., Peng, C., Li, L., He, Y. L., Liu, W., and Tang, G. L.
13107–13111
(2009) Biosynthesis of 3-hydroxy-5-methyl-o-methyltyrosine in the safra- 29. Khatri, Y., Hannemann, F., Ewen, K. M., Pistorius, D., Perlova, O., Kagawa,
mycin/ safracin biosynthetic pathway. J. Microbiol. Biotechnol. 19,
439–446
N., Brachmann, A. O., Müller, R., and Bernhardt, R. (2010) The CYPome
of Sorangium cellulosum So ce56 and identification of CYP109D1 as a new
fatty acid hydroxylase. Chem. Biol. 17, 1295–1305
9. Koketsu, K., Watanabe, K., Suda, H., Oguri, H., and Oikawa, H. (2010)
Reconstruction of the saframycin core scaffold defines dual Pictet-Spen- 30. Allen, J. W., Leach, N., and Ferguson, S. J. (2005) The histidine of the
gler mechanisms. Nat. Chem. Biol. 6, 408–410
c-type cytochrome CXXCH haem-binding motif is essential for haem
attachment by the Escherichia coli cytochrome c maturation (Ccm) appa-
ratus. Biochem. J. 389, 587–592
10. Fitzpatrick, P. F. (1999) Tetrahydropterin-dependent amino acid hy-
droxylases. Ann. Rev. Biochem. 68, 355–381
11. Sánchez-Ferrer, A., Rodríguez-López, J. N., Garcia-Cánovas, F., and 31. Guillou, H., D’Andrea, S., Rioux, V., Barnouin, R., Dalaine, S., Pedrono, F.,
García-Carmona, F. (1995) Tyrosinase: a comprehensive review of its
mechanism. Biochim. Biophys. Acta 1247, 1–11
Jan, S., and Legrand, P. (2004) Distinct roles of endoplasmic reticulum
cytochrome b5 and fused cytochrome b5-like domain for rat ␦6-desatu-
rase activity. J. Lipid Res. 45, 32–40
12. Lin, S., Van Lanen, S. G., and Shen, B. (2008) Characterization of the
two-component, FAD-dependent monooxygenase SgcC that requires 32. Mense, S. M., and Zhang, L. (2006) Heme: a versatile signaling molecule
carrier protein-tethered substrates for the biosynthesis of the enediyne
controlling the activities of diverse regulators ranging from transcription
factors to MAP kinases. Cell Res. 16, 681–692
antitumor antibiotic C-1027. J. Am. Chem. Soc. 130, 6616–6623
13. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory 33. Neusser, D., Schmidt, H., Spizèk, J., Novotnà, J., Peschke, U., Kaschabeck,
Manual, 3rd ed., Cold Spring Harbor Laboratory Press, New York
14. Trost, B. M., and Rudd, M. T. (2003) Chemoselectivity of the ruthenium-
catalyzed hydrative diyne cyclization: total synthesis of (ϩ)-cylindricine C,
D, and E. Org. Lett. 5, 4599–4602
S., Tichy, P., and Piepersberg, W. (1998) The genes lmbB1 and lmbB2 of
Streptomyces lincolnensis encode enzymes involved in the conversion of
L-tyrosine to propylproline during the biosynthesis of the antibiotic linco-
mycin A. Arch. Microbiol. 169, 322–332
15. Deboves, H. J., Montalbetti, C. A., and Jackson, R. F. (2001) Direct synthe-
sis of Fmoc-protected amino acids using organozinc chemistry: applica-
34. Hurley, L. H., and Rokem, J. S. (1983) Biosynthesis of the antitumor anti-
biotic CC-1065 by Streptomyces zelensis. J. Antibiot. 36, 383–390
tion to polymethoxylated phenylalanines and 4-oxoamino acids. J. Chem. 35. Hannemann, F., Bichet, A., Ewen, K. M., and Bernhardt, R. (2007) Cyto-
Soc. Perkin Trans. 1, 1876–1884
chrome P450 systems-biological variations of electron transport chains.
Biochim. Biophys. Acta 1770, 330–344
16. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of protein-dye 36. Zamocky, M., and Obinger, C. (2010) in Biocatalysis Based on Heme Per-
binding. Anal. Biochem. 72, 248–254
oxidases, (Torres, E., and Ayala, M., eds) Springer-Verlag, Berlin,
Heidelberg
17. Berry, E. A., and Trumpower, B. L. (1987) Simultaneous determination of
hemes a, b, and c from pyridine hemochrome spectra. Anal. Biochem. 161, 37. Hofrichter, M., and Ullrich, R. (2006) Heme-thiolate haloperoxidases: ver-
1–15
satile biocatalysts with biotechnological and environmental significance.
Appl. Microbiol. Biotechnol. 71, 276–288
18. Chowdhury, G., Murayama, N., Okada, Y., Uno, Y., Shimizu, M., Shibata,
N., Guengerich, F. P., and Yamazaki H. (2010) Human liver microsomal
cytochrome P450 3A enzymes involved in thalidomide 5-hydroxylation
and formation of a glutathione conjugate. Chem. Res. Toxicol. 23,
1018–1024
38. Hofrichter, M., Ullrich, R., Pecyna, M. J., Liers, C., and Lundell, T. (2010)
New and classic families of secreted fungal heme peroxidases. Appl. Mi-
crobiol. Biotechnol. 87, 871–897
39. Smith, P. I., and Swan, G. A. (1976) A study of the supposed hydroxylation
of tyrosine catalysed by peroxidase. Biochem. J. 153, 403–408
19. Alberta, J. A., and Dawson, J. H. (1987) Purification to homogeneity and
initial physical characterization of secondary amine monooxygenase. 40. Connor, K. L., Colabroy, K. L., and Gerratana, B. (2011) A heme peroxi-
J. Biol. Chem. 262, 11857–11863
dase with a functional role as an L-tyrosine hydroxylase in the biosynthesis
of anthramycin. Biochemistry. 50, 8926–8936
20. Tenhunen, R., Marver, H. S., and Schmid, R. (1968) The enzymatic con-
FEBRUARY 10, 2012•VOLUME 287•NUMBER 7
JOURNAL OF BIOLOGICAL CHEMISTRY 5121