cooperative interplay of p–p stacking and secondary bonding
interaction of dipolar CN group. Like other cyano-substituted dis-
This work was supported by Basic Science Research Program
(CRI; RIAMI-AM0209(0417-20090011)) and WCU (World Class
University) project (R31-2008-000-10075-0) through the National
Research Foundation of Korea funded by the Ministry of Education,
Science and Technology.
6,9
tyrylbenzene derivatives reported earlier by us, b-DCS exhibits
a great increase (32.5 times) in fluorescence efficiency from practically
ꢁ2
nonfluorescent THF solution (F
F
¼ 1.6 ꢂ 10 ) to the strongly
¼ 0.52) due to the character-
fluorescent supramolecular phase (F
F
istic aggregation-induced enhanced emission (AIEE) process. The
AIEE process is generally known to be originating not only from the
spatial confinement effect but also from the formation of specific
supramolecular stacking architecture associated with the unique
electronic and geometric characteristics of the designed molecules.
This highly fluorescent property in the supramolecular phase will
certainly play a beneficial role in the fluorescence-based application of
b-DCS. In the emission spectra, the peak maximum of the crystalline
phase is bathochromically shifted to 514 nm with respect to that of
solution at 445 nm (Fig. 3b). The large bathochromic shift and the
Notes and references
1 (a) D. O’Carroll, D. Iacopino, A. O’Riordan, P. Lovera,
ꢁ
E. O’Connor, G. A. O’Brien and G. Redmond, Adv. Mater., 2008,
2
0, 42; (b) A. L. Briseno, S. C. B. Mannsfeld, X. Lu, Y. Xiong,
S. A. Jenekhe, Z. Bao and Y. Xia, Nano Lett., 2007, 7, 668; (c)
Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao and L. Zang, J.
Am. Chem. Soc., 2007, 129, 6354; (d) Y. Yamamoto, T. Fukushima,
Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M. Taniguchi,
T. Kawai and T. Aida, Science, 2006, 314, 1761; (e) L. Schmidt-
Mende, A. Fechtenk o€ tter, K. M u€ llen, E. Moons, R. H. Friend and
J. D. MacKenzie, Science, 2001, 293, 1119.
10
2
(a) S. Diring, F. Camerel, B. Donnio, T. Dintzer, S. Toffanin,
R. Capelli, M. Muccini and R. Ziessel, J. Am. Chem. Soc., 2009,
relatively long lifetime of the emission (lshift ¼ 69 nm, sav ¼ 19.2 ns)
in crystalline b-DCS indicate that efficient excimer formation is
1
31, 18177; (b) S. Varghese, N. S. S. Kumar, A. Krishna,
11
favored by pronounced overlap of the p-systems. These
observations represent that intermolecular p–p stacking
interactions play an important role in determining optical properties
of b-DCS as well as the gelation ability and the formation of 1D
architectures.
D. S. S. Rao, S. K. Prasad and S. Das, Adv. Funct. Mater., 2009,
19, 2064; (c) J. P. Hong, M. C. Um, S. R. Nam, J. I. Hong and
S. Lee, Chem. Commun., 2009, 310; (d) S. Prasanthkumar, A. Saeki,
S. Seki and A. Ajayaghosh, J. Am. Chem. Soc., 2010, 132, 8866; (e)
S. Prasanthkumar, A. Gopal and A. Ajayaghosh, J. Am. Chem.
Soc., 2010, 132, 13206; (f) S. Zhang, M. A. Greenfield, A. Mata,
L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, M. O. de la
Cruz and S. I. Stupp, Nat. Mater., 2010, 9, 594; (g) S. S. Babu,
K. K. Kartha and A. Ajayaghosh, J. Phys. Chem. Lett., 2010, 1, 3413.
(a) P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133; (b)
A. Dawn, T. Shiraki, S. Haraguchi, S. Tamaru and S. Shinkai,
Chem.–Asian J., 2011, 6, 266.
Finally, we have briefly investigated the electrical property of
crystalline b-DCS samples for the practical use of their 1D
morphology and face-to-face p–p stacking motif between p-conju-
gated rigid aromatic molecules. The I–V measurements were carried
out for crystalline b-DCS samples grown directly onto a vertically
3
4
(a) B. K. An, D. S. Lee, J. S. Lee, Y. S. Park, H. S. Song and
S. Y. Park, J. Am. Chem. Soc., 2004, 126, 10232; (b) X. Yang,
R. Lu, T. Xu, P. Xue, X. Liu and Y. Zhao, Chem. Commun., 2008,
453; (c) J. W. Chung, B. K. An and S. Y. Park, Chem. Mater.,
2
placed SiO /Si substrate by the simple solvent evaporation method
(see ESI† for the detailed fabrication method). 1D supramolecules of
b-DCS showed a clear birefringence under cross-polarized condition,
indicating that they had a highly oriented molecular ordering (see
ESI†). For comparison, we have also fabricated a vacuum-deposited
thin film (b-DCS, thickness of 50 nm) device. The electrical
conductivity of 1D supramolecules of b-DCS was measured to be as
2
008, 20, 6750; (d) I. Hisaki, H. Shigemitsu, Y. Sakamoto,
Y. Hasegawa, Y. Okajima, K. Nakano, N. Tohnai and M. Miyata,
Angew. Chem., Int. Ed., 2009, 48, 5465; (e) B. K. An, S. H. Gihm,
J. W. Chung, C. R. Park, S. K. Kwon and S. Y. Park, J. Am.
Chem. Soc., 2009, 131, 3950; (f) J. W. Chung, S. J. Yoon, S. J. Lim,
B. K. An and S. Y. Park, Angew. Chem., Int. Ed., 2009, 48, 7030;
ꢁ
6
ꢁ1
ꢁ6
ꢁ1
high as 9.7 ꢂ 10 S cm (for 7 devices, s ¼ 4.2 ꢂ 10 S cm ). On
av
(
g) X. Yang, R. Lu, F. Gai, P. Xue and Y. Zhan, Chem. Commun.,
010, 46, 1088; (h) X. Zhang, R. Lu, J. Jia, X. Liu, P. Xue, D. Xu
and H. Zhou, Chem. Commun., 2010, 46, 8419.
5 K. Jang, A. D. Ranasinghe, C. Heske and D. C. Lee, Langmuir, 2010,
6, 13630.
S. J. Yoon and S. Y. Park, J. Mater. Chem., 2011, 21, 8338.
the other hand, it was obtained that those of the vacuum-deposited b-
S
2
ꢁ7
DCS thin film were an order of magnitude lower to be 6.9 ꢂ 10
ꢁ1
ꢁ7
ꢁ1
cm (maximum value, for 5 devices, sav ¼ 3.6 ꢂ 10 S cm ) (see
ESI†). In this respect, it should be mentioned that 1D alignment of b-
DCS molecules induced by the supramolecular self-assembly process
gives the more crystalline sample with extended pathways for charge
carrier transport. The electrical conductivity value of 1D supra-
molecules of b-DCS is comparable with one of the well-known
organic semiconductors, poly(3-hexylthiophene) (P3HT) (s ¼ 7.5 ꢂ
2
6
7 (a) R. Li, W. Hu, Y. Liu and D. Zhu, Acc. Chem. Res., 2010, 43, 529;
(b) K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker,
M. Yen, J. Zhao and L. Zang, J. Am. Chem. Soc., 2006, 128, 7390;
(
c) Y. Zhao, X. Mu, C. Bao, Y. Fan, J. Zhang and Y. Wang,
Langmuir, 2009, 25, 3264; (d) Y. Fan, Y. Zhao, L. Ye, B. Li,
G. Yang and Y. Wang, Cryst. Growth Des., 2009, 9, 1421; (e)
L. Huang, Q. Liao, Q. Shi, H. Fu, J. Ma and J. Yao, J. Mater.
Chem., 2010, 20, 159; (f) S. Varghese and S. Das, J. Phys. Chem.
Lett., 2011, 2, 863.
ꢁ6
ꢁ1
ꢁ6
ꢁ1
10
S cm ) and oligothiophene (s ¼ 9.9 ꢂ 10 S cm ) prepared by
12
a solution method.
In summary, we have synthesized and successfully demonstrated
the smallest wholly p-conjugated aromatic molecular gelator based
on distyrylbenzene with b-cyano groups (b-DCS) showing highly
8
9
M. Kasha, H. R. Rawls and M. L. El-Bayoumi, Pure Appl. Chem.,
1965, 11, 371.
S. J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M. G. Choi,
D. Kim and S. Y. Park, J. Am. Chem. Soc., 2010, 132, 13675.
0 The fluorescence decay of b-DCS in solution is too short to measure
enhanced fluorescence emission (F
F
¼ 0.52) in the self-assembled
1
crystalline phase. The cooperative interplay of p–p stacking and
secondary bonding interactions of dipolar CN groups was found to
be responsible for both the outstanding 1D self-assembling tendency
and the unique optoelectronic properties (enhanced emission and
semiconductivity) of b-DCS.
by using our lifetime measurement instrument sets (s < 70 ps). A very
F
short fluorescence lifetime (s
a solution of related compound (see ref. 9).
F
¼ 4.2 ps) has been observed for
1
1
1 T. F o€ rster and K. Kasper, Z. Elektrochem., 1955, 59, 976.
2 D. A. Stone, A. S. Tayi, J. E. Goldberger, L. C. Palmer and
S. I. Stupp, Chem. Commun., 2011, 47, 5702.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 18971–18973 | 18973