3472
O. Rosati et al. / Bioorg. Med. Chem. 15 (2007) 3463–3473
5.5. 3-Phenyl-2-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetra-
hydro-2H- indazole (12)
charges of residues were calculated using the Kollman
united charge model of the Amber force field as imple-
mented in Autodock tools package.37 Each docking
experiment consisted in 100 docking runs using the ge-
netic algorithm with a population size of 50 individuals
and 2,500,000 energy evaluations. Other parameters
were left to their respective default values. The search
was conducted in a grid of 60 points per dimension
and a step size of 0.375 centred on the binding site of
SC-558 as resulting from the crystallized complex with
COX-2 (pdb code 1cx2).17 Role of five violations and
polar surface area (PSA) were calculated using
JChem.13,38 All calculations were carried out on SGI
O2 R5000 and R10000 workstations.
1
Yield, 92%; white powder; mp 104–105 ꢁC; H NMR
(400 MHz, CDCl3) d 1.81 (m, 2H, CH2), 1.92 (m, 2H,
CH2), 2.60 (t, J = 6.1 Hz, 2H, CH2), 2.84 (t,
J = 6.1 Hz, 2H, CH2), 7.21 (d, J = 6 Hz, 2H, PhH),
7.37 (m, 5H, PhH), 7.54 (d, J = 6 Hz, 2H, PhH); 13C
NMR (100 MHz, CDCl3) d 21.6, 23.5, 23.6, 23.8,
118.3, 126.9 (q, JCF = 270.4 Hz), 124.4, 126.2 (q,
JCF = 4.0 Hz), 128.5, 129.0, 129.5, 130.8, 138.9, 143.4,
151.6; GC–MS m/z 342 (M+), 314, 265, 248, 197, 145,
77.
5.6. Methyl-3-phenyl-4,5,6,7-tetrahydro-2H-indazole-2-
carboxylate (13)
Acknowledgements
Yield, 95%; white powder; mp 85–86 ꢁC; 1H NMR
(400 MHz, CDCl3) d 1.73 (m, 2H, CH2), 1.84 (m, 2H,
CH2), 2.42 (t, J = 6.2 Hz, 2H, CH2), 2.79 (t,
J = 6.2 Hz, 2H, CH2), 3.92 (s, 3H, OCH3), 7.29–7.47
(m, 5H, PhH); 13C NMR (50 MHz, CDCl3) d 20.7,
22.7, 22.8, 23.7, 54.2, 120.4, 127.9, 128.4, 129.1, 130.6,
141.9, 150.5, 154.1; GC–MS m/z 256 (M+), 241, 265,
228, 197, 169, 141, 77.
Financial support from MIUR, National Project
‘‘Sviluppo di processi ecocompatibili nella sintesi orga-
nica’’ and CEMIN (Centro di Eccellenza Materiali
Innovativi Nanostrutturati per applicazioni chimiche,
fisiche e biomediche) is gratefully acknowledged.
References and notes
5.7. 3-Phenyl-2-pyridin-2-yl-4,5,6,7-tetrahydro-2H-ind-
azole (14)
1. (a) Elguero, J.. In Comprehensive Heterocyclic Chemistry;
Katritaky, A. R., Rees, C. W., Eds.; Pergamon: Oxford,
1984; Vol. 5, p 167; (b) Elguero, J. In Comprehensive
Heterocyclic Chemistry II; Katritaky, A. R., Rees, C. W.,
Scriven, E. F., Eds.; Elsevier: Oxford, 1996; Vol. 3, pp
1–75.
1
Yield, 81%; yellow powder; mp 137–138 ꢁC; H NMR
(200 MHz, CDCl3) d 1.73–2.09 (m, 4H, 2· CH2), 2.63
(t, J = 6 Hz, 2H, CH2), 2.87 (t, J = 6 Hz, 2H, CH2),
7.13–7.26 (m, 7H, ArH + PyH), 7.70 (td, J = 1.9, 8 Hz,
1H, PyH), 8.38 (dd, J = 1.5, 5.6 Hz, 1H, PyH); 13C
NMR (100 MHz, CDCl3) d 21.7, 23.5, 23.7, 23.9,
118.2, 118.5, 121.9, 127.9, 128.5, 129.3, 131.5, 138.1,
139.1, 148.8, 151.7, 152.9; GC–MS m/z 275 (M+), 246,
219, 197, 169, 115, 77.
2. Mahajan, R. N.; Havaldar, F. H.; Fernandes, P. S.
J. Indian Chem. Soc. 1991, 68, 245.
3. (a) Genin, M. J.; Biles, C.; Keiser, B. J.; Poppe, S. M.;
Swaney, S. M.; Tarpley, W. G.; Yagi, Y.; Romero, D. L.
J. Med. Chem. 2000, 43, 1034; (b) Janus, S. L.; Magdif, A.
Z.; Erik, B. P.; Claus, N. Monatsh. Chem. 1999, 130, 1167.
4. (a) Badawey, E.; El-Ashmawey, I. M. Eur. J. Med. Chem.
1998, 33, 349; (b) Sui, Z.; Guan, J.; Ferro, M. P.; McCoy,
K.; Wachter, M. P.; Murray, W. V.; Singer, M.; Steber,
M.; Ritchie, D. M.; Argentieri, D. C. Bioorg. Med. Chem.
Lett. 2000, 10, 601.
5. Bailey, D. M.; Hansen, P. E.; Hlavac, A. G.; Baizman, E.
R.; Pearl, J.; Defelice, A. F.; Feigenson, M. E. J. Med.
Chem. 1985, 28, 256.
6. Kees, K. L.; Fitzgerald, J. J.; Steiner, K. E.; Mattes, J. F.;
Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M. L.
J. Med. Chem. 1996, 39, 3920.
5.8. 2-(2,5-Difluorophenyl)-3-phenyl-4,5,6,7-tetrahydro-
2H-indazole (15)
1
Yield, 86%; white powder; mp 125–126 ꢁC; H NMR
(200 MHz, CDCl3) d 1.75–2.04 (m, 4H, 2· CH2), 2.67
(t, J = 6 Hz, 2H, CH2), 2.85 (t, J = 6 Hz, 2H, CH2),
7.03 (m, 2H, ArH), 7.17–7.42 (m, 6H, ArH); 13C
NMR (100 MHz, CDCl3) d 21.7, 23.4, 23.7, 23.8,
115.9 (d, JCF = 25.5 Hz), 116.2 (dd, JCF = 23.6,
7.7 Hz), 116.6, 117.6 (dd, JCF = 31.9, 9.2 Hz), 128.3,
128.6, 128.7, 129.7 (dd, JCF = 13.8, 10.5 Hz), 130.4,
140.6, 151.8, 152.8 (d, JCF = 246.7 Hz), 158.5 (d,
JCF = 243.1 Hz); GC–MS m/z 310 (M+), 282, 233, 197,
170, 140, 113, 77.
7. Lyga, J. W.; Patera, R. M.; Plummer, M. J.; Halling, B. P.;
Yuhas, D. A. Pestic. Sci. 1994, 42, 29.
8. Xie, W.; Chipman, J.; Robertson, D. L.; Erikson, R. L.;
Simmons, D. L. Proc. Natl. Acad. Sci. U.S.A. 1991, 88,
2692–2696.
9. (a) Vane, J. R.; Botting, R. M. Inflammation Res. 1998, 47,
S78–S87; (b) Katori, M.; Majima, M.; Harada, Y.
Inflammation Res. 1998, 47, S107–S111.
5.9. Molecular modelling
10. DeWitt, D. L. Mol. Pharmacol. 1999, 55, 625.
11. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J.
S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.;
Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier,
D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn,
J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.;
Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P.
C. J. Med. Chem. 1997, 40, 1347.
Docking experiments were performed using Autodock
v3.0.16 Ligands were built using the sketch module of
Cerius-2.35 Each compound was minimized using the
Universal force-field v.1.2 and the Smart Minimizer pro-
tocol of the Open Force Field module (OFF).36 Atomic
charges were calculated using the semi-empirical
Mopac/AM1 method for small molecules. Atomic