Synthesis and Structure of 2,6,14- and
2,7,14-Trisubstituted Triptycene Derivatives
Chun Zhang†,‡ and Chuan-Feng Chen*,†
Center for Molecular Science, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100080, China, and Graduate
School, Chinese Academy of Sciences, Beijing 100049, China
ReceiVed May 25, 2006
A series of 2,6,14- and 2,7,14-trisubstituted triptycene
derivatives were efficiently synthesized and their structures
were determined by NMR, MS spectra, and X-ray analysis.
These trisubstituted triptycenes are potential building blocks
for constructing novel receptors and synthetic molecular
machines.
FIGURE 1. (a) Two views of the crystal structure of compound 2b;
(b) crystal packing of 2b viewed along the a-axis. Hydrogen atoms
are omitted for clarity.
shown to be useful building blocks in constructing molecular
devices and synthetic molecular machines.7
Recently, we8 were interested in the development of new
supramolecular systems based on triptycene. Consequently,
some of triptycene derivatives with unique structure and
properties are needed. Herein we report the efficient synthesis
of a series of 2,6,14- and 2,7,14-trisubstituted triptycene
derivatives, which are potential building blocks for constructing
novel receptors and synthetic molecular machines.
Triptycene1 and its derivatives are a class of interesting
compounds with three-dimensional rigid frameworks. They have
been found to have unique electrochemical and photochemical
properties,2 interesting reactivities,3 potential pharmaceutical
properties,4 and attractive applications in supramolecular chem-
istry5 and materials science.6 Moreover, they have also been
2,6,14-Trinitrotriptycene and 2,7,14-trinitrotriptycene were
first synthesized as byproducts in 19739 by the reaction of
triptycene and acetyl nitrate in the presence of acetic anhydride
and glacial acetic acid. Recently, MacLachlan et al.10 reported
that the nitration of triptycene with concentrated HNO3 gave
† Institute of Chemistry, Chinese Academy of Sciences.
‡ Graduate School, Chinese Academy of Sciences.
(1) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942,
64, 2649-2653.
(2) (a) Satrijo, A.; Swager, T. M. Macromolecules 2005, 38, 4054-4057.
(b) Perepichka, D. F.; Bendikov, M.; Meng, H.; Wudl, F. J. Am. Chem.
Soc. 2003, 125, 10190-10191. (c) Beyeler, A.; Belser, P. Coord. Chem.
ReV. 2002, 230, 28-38. (d) Korth, O.; Wiehe, A.; Kurreck, H.; Ro¨der, B.
Chem. Phys. 1999, 246, 363-372. (e) Norvez, S.; Barzoukas, M. Chem.
Phys. Lett. 1990, 165, 41-44.
(6) (a) Long, T. M.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 3826-
3827. (b) Long, T. M.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 14113-
14119. (c) Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 9670-
9671. (d) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321-
5322. (e) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864-
11873. (f) Yang, J.-S.; Lin, C.-S.; Hwang, C.-Y. Org. Lett. 2001, 3, 889-
892. (g) Norvez, S. J. Org. Chem. 1993, 58, 2414-2418.
(7) (a) Iwamura, H.; Mislow, K. Acc. Chem. Res. 1988, 21, 175-182.
(b) Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia,
A.; Lang, F.; Kim, M. H.; Jette, M. P. J. Am. Chem. Soc. 1994, 116, 3657-
3658. (c) Kelly, T. R.; Silva, R. A.; Silva, H. D.; Jasmin, S.; Zhao, Y. J.
Am. Chem. Soc. 2000, 122, 6935-6949. (d) Godinez, C. E.; Zepeda, G.;
Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124, 4701-4707. (e)
Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Cozzi, F. J.
Phys. Org. Chem. 2004, 17, 749-751.
(8) (a) Zhu, X. Z.; Chen, C. F. J. Am. Chem. Soc. 2005, 127, 13158-
13159. (b) Zong, Q. S.; Chen, C. F. Org. Lett. 2006, 8, 211-214. (c) Han,
T.; Chen, C. F. Org. Lett. 2006, 8, 1069-1072. (d) Zong, Q. S.; Zhang, C.;
Chen, C. F. Org. Lett. 2006, 8, 1859-1862. (e) Zhu, X. Z.; Chen, C. F.
Chem.sEur. J. 2006, 12, 5603-5609. (f) Gong, K. P.; Zhu, X. Z.; Zhao,
R.; Xiong, S. X.; Mao, L. Q.; Chen, C. F. Anal. Chem. 2005, 77, 8158-
8165.
(3) (a) Marks, V.; Nahmany, M.; Gottlieb, H. E.; Biali, S. E. J. Org.
Chem. 2002, 67, 7898-7901. (b) Lu, J.; Zhang, J.; Shen, X.; Ho, D. M.;
Pascal, R. A., Jr. J. Am. Chem. Soc. 2002, 124, 8035-8041. (c) Iiba, E.;
Hirai, K.; Tomioka, H.; Yoshioka, Y. J. Am. Chem. Soc. 2002, 124, 14308-
14309. (d) Spyroudis, S.; Xanthopoulou, N. J. Org. Chem. 2002, 67, 4612-
4614. (e) Spyroudis, S.; Xanthopoulou, N. Tetrahedron Lett. 2003, 44,
3767-3770. (f) Zhu, X. Z.; Chen, C. F. J. Org. Chem. 2005, 70, 917-924.
(4) (a) Hua, D. H.; Tamura, M.; Huang, X.; Stephany, H. A.; Helfrich,
B. A.; Perchellet, E. M.; Sperfslage, B. J.; Perchellet, J.-P.; Jiang, S.; Kyle,
D. E.; Chiang, P. K. J. Org. Chem. 2002, 67, 2907-2912. (b) Perchellet,
E. M.; Magill, M. J.; Huang, X.; Brantis, C. E.; Hua, D. H.; Perchellet,
J.-P. Anti-Cancer Drugs 1999, 10, 749-766. (c) Yang, W.; Perchellet, E.
M.; Tamura, M.; Hua, D. H.; Perchellet, J. P. Cancer Lett. 2002, 188, 73-
83.
(5) (a) Marc Veen, E.; Postma, P. M.; Jonkman, H. T.; Spek, A. L.;
Feringa, B. L. Chem. Commun. 1999, 1709-1710. (b) Yang, J.-S.; Liu,
C.-P.; Lee, G.-H. Tetrahedron Lett. 2000, 41, 7911-7915. (c) Yang, J.-S.;
Lee, C.-C.; Yau, S.-L.; Chang, C.-C.; Lee, C.-C.; Leu, J.-M. J. Org. Chem.
2000, 65, 871-877. (d) Yang, J.-S.; Liu, C.-P.; Lin, B. C.; Tu, C. W.; Lee,
G. H. J. Org. Chem. 2002, 67, 7343-7354.
(9) Shigeru, T.; Ryusei, K. J. Am. Chem. Soc. 1973, 95, 4976-4986.
10.1021/jo061067t CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/28/2006
6626
J. Org. Chem. 2006, 71, 6626-6629