Journal of Materials Chemistry A
Paper
ratios of trans/cis azobenzene. Therefore, the H2/CO2 separation
factor is expected to switch not only between the minimum and
maximum values, but also each value in between realized by
choosing appropriate irradiation times, offering a potential and
promising road for remote control of membrane permeance/
selectivity by external stimuli.
5 F. Gallucci, E. Fernandez, P. Corengia and M. van Sint
Annaland, Chem. Eng. Sci., 2013, 92, 40–66.
6 S. Uemiya, T. Matsuda and E. Kikuchi, J. Membr. Sci., 1991,
56, 315–325.
7 M. Hong, S. Li, J. L. Falconer and R. D. Noble, J. Membr. Sci.,
2008, 307, 277–283.
8 J. L. Falconer, M. A. Carreon, S. Li and R. D. Noble, U.S. Pat.,
no. 8302782, 6 Nov 2012.
9 A. Huang and J. Caro, J. Mater. Chem., 2011, 21, 11424–11429.
10 M. Kanezashi, J. O'Brien-Abraham, Y. S. Lin and K. Suzuki,
AIChE J., 2008, 54, 1478–1486.
11 J. van den Bergh, A. Tihaya and F. Kapteijn, Microporous
Mesoporous Mater., 2010, 132, 137–147.
12 R. M. De Vos and H. Verweij, Science, 1998, 279, 1710–1711.
13 M. B. Shiett and H. C. Foley, Science, 1999, 285, 1902–1905.
14 R. Ranjan and M. Tsapatsis, Chem. Mater., 2009, 21, 4920–
4924.
15 A. Huang, H. Bux, F. Steinbach and J. Caro, Angew. Chem.,
2010, 122, 5078–5081.
16 X. Wu, C. Liu, J. Caro and A. Huang, J. Membr. Sci., 2018, 559,
1–7.
17 A. Huang, N. Wang, C. Kong and J. Caro, Angew. Chem., Int.
Ed., 2012, 51, 10551–10555.
18 A. Huang, Y. Chen, N. Wang, Z. Hu, J. Jiang and J. Caro,
Chem. Commun., 2012, 48, 10981–10983.
Conclusions
In conclusion, we have designed and prepared a novel smart
Cu(AzDC)(4,40-BPE)0.5 membrane. In the Cu(AzDC)(4,40-BPE)0.5
framework, the azobenzene and bis(4-pyridyl)ethylene moieties as
the “backbone” of the linker are incorporated directly into the
framework, forming an interpenetrating network structure with
˚
a small pore size of about 3.4 ꢀ 3.4 A. In particular, under irra-
diation with UV light, azobenzene and bis(4-pyridyl)ethylene
moieties can be switched from the trans to cis conguration,
resulting in squeezing out of the adsorbed CO2. Due to different
interactions of the H2 and CO2 multipole moments with cis- or
trans-Cu(AzDC)(4,40-BPE)0.5, the H2 permeance only shows slight
reduction with UV irradiation, while the CO2 permeance decreases
remarkably, thus leading to a notable enhancement of the mixture
separation factor of H2/CO2 from 21.3 to 43.7. Further, the
molecular sieving performance of the Cu(AzDC)(4,40-BPE)0.5
membrane can be facilely controlled by ne-tuning the ratios of
trans/cis azobenzene, offering a potential and promising road for
remote control of membrane permeance and selectivity by
external stimuli.
19 A. Huang, W. Dou and J. Caro, J. Am. Chem. Soc., 2010, 132,
15562–15564.
20 Q. Liu, N. Wang, J. Caro and A. Huang, J. Am. Chem. Soc.,
2013, 135, 17679–17682.
21 Y. S. Lin, Curr. Opin. Chem. Eng., 2015, 8, 21–28.
22 S. R. Venna and M. A. Carreon, Chem. Eng. Sci., 2015, 124,
3–19.
23 S. Qiu, M. Xue and G. Zhu, Chem. Soc. Rev., 2014, 43, 6116–
6140.
Conflicts of interest
There are no conicts to declare.
24 Z. Kang, L. Fan and D. Sun, J. Mater. Chem. A, 2017, 5, 10073–
10091.
25 X. Wu, W. Wei, J. Jiang, J. Caro and A. Huang, Angew. Chem.,
Int. Ed., 2018, 57, 15354–15358.
26 F.-X. Coudert, Chem. Mater., 2015, 27, 1905–1916.
27 B. Gui, Y. Meng, Y. Xie, K. Du, A. C. H. Sue and C. Wang,
Macromol. Rapid Commun., 2018, 39, 1700388.
28 A. Knebel, C. Zhou, A. Huang, J. Zhang, L. Kustov and J. Caro,
Chem. Eng. Technol., 2018, 41(2), 224–234.
29 J. Zhang, Q. Zou and H. Tian, Adv. Mater., 2013, 25, 378–399.
30 A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov,
A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer and
J. Caro, Science, 2017, 358, 347–351.
Acknowledgements
Financial support by the National Natural Science Foundation
of China (21878100 and 21761132003), the Fundamental
Research Funds for the Central Universities (40500-20101-
222093), the K. C. Wong Education Foundation (rczx0800), and
the Key Research Program of Frontier Sciences of CAS (QYZDB-
SSW-JSC037) is acknowledged. Prof. Armin Feldhoff (Institut fur
Physikalische Chemie und Elektrochemie, Leibniz Universitat
Hannover, Germany) is thanked for TOPAS soware Pawley
analysis of XRD patterns using TOPAS soware and fruitful
discussions.
¨
¨
31 M. M. Russew and S. Hecht, Adv. Mater., 2010, 22, 3348–
3360.
References
1 S. Dunn, Int. J. Hydrogen Energy, 2002, 27, 235–264.
32 R. Klajn, Chem. Soc. Rev., 2014, 43, 148–184.
2 J. R. Rostrup-Nielsen and T. Rostrup-Nielsen, CATTECH, 33 D. Liu, Z. G. Ren, H. X. Li, J. P. Lang, N. Y. Li and
2002, 6, 150–159.
B. F. Abrahams, Angew. Chem., Int. Ed., 2010, 49, 4767–4770.
3 A. J. Brown, N. A. Brunelli, K. Eum, F. Rashidi, J. Johnson, 34 A. Modrow, D. Zargarani, R. Herges and N. Stock, Dalton
W. J. Koros, C. W. Jones and S. Nair, Science, 2014, 345, 72–
Trans., 2011, 40, 4217–4222.
75.
35 A. Modrow, D. Zargarani, R. Herges and N. Stock, Dalton
Trans., 2012, 41, 8690–8696.
4 N. W. Ockwig and T. M. Nenoff, Chem. Rev., 2007, 107, 4078–
4110.
24954 | J. Mater. Chem. A, 2018, 6, 24949–24955
This journal is © The Royal Society of Chemistry 2018