Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
ChemComm
(Fig. 4b), which was confirmed through TEM analyses. TEM functional COFs for novel applications through rational design
DOI: 10.1039/C8CC05369C
images of Au(0)/TTB-COF illustrate Au NPs were dispersed on at the atomic/molecular level.
the surface of TTB-COF (Fig. 4c). The Au 4f XPS spectrum of the
We thank the National Natural Science Foundation of China
Au/TTB-COF displays Au3+ (91.4 and 89.1 eV) and Au+ peaks (No. 51672046, 51672047, 51472050 and 21403238) and the
(87.4 and 85.1 eV). No Au0 signals could be detected before the Open Project Program of the State Key Laboratory of
reduction. After in situ reduction with Na2S, the typical XPS Photocatalysis on Energy and Environment (No. SKLPEE-
peaks of Au0 appear at 88.4 (Au 4f5/2) and 84.4 eV (Au 4f7/2) (Fig. KF201815).
4d), respectively. Meanwhile, the intensities of Au3+ and Au+ Conflicts of interest
peaks clearly decrease. The appearance of Au0 could be
assigned to the interior Au atoms in Au nanoparticles in
Au(0)/nanoparticles, while Au+ are attributed to the surface Au
atoms of the nanoparticles. Therefore, the pendant thioether
groups in TTB-COF not only provide strong Au-S interactions but
also stabilize the Au nanoparticles ions in nanoparticles. XRD
pattern for Au(0)/TTB-COF displayed characteristic peaks of
metallic Au (Fig. S29, ESI†). Au(0)/TTB-COF was then subjected
to the next Au ions capture run. Gratifyingly, the Au ions
adsorption capacity was still up to 98% even after four cycles
(Fig. 4e). Upon further pyrolysis to decompose the COF, high-
purity metallic Au is obtained (metallic Au in Fig. 4a).
There are no conflicts to declare.
Notes and references
1
2
S. Syed, Hydrometallurgy, 2012, 115-116, 30-51.
(a) Z. Liu, M. Frasconi, J. Lei, Z. J. Brown, Z. Zhu, D. Cao, J. Iehl,
G. Liu, A. C. Fahrenbach, Y. Y. Botros, O. K. Farha, J. T. Hupp, C.
A. Mirkin and J. Fraser Stoddart, Nat. Commun., 2013, 4, 1855;
(b) C. Yue, H. Sun, W. Liu, B. Guan, X. Deng, X. Zhang and P.
Yang, Angew. Chem., Int. Ed., 2017, 56, 9331-9335.
A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger
and O. M. Yaghi, Science, 2005, 310, 1166-1170.
3
4
(a) N. Huang, P. Wang and D. Jiang, Nat. Rev. Mater., 2016, 1,
16068; (b) S. Ding and W. Wang, Chem. Soc. Rev., 2013, 42
,
548-568. (c) H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B.
Wang, X. Ai and C. Wang, J. Mater. Chem. A, 2016,
7421.
4, 7416-
5
6
(a) M. Zhu, S. Xu, X. Wang, Y. Chen, L. Dai and X. Zhao, Chem.
Commun., 2018, 54, 2308-2311; (b) G. Lin, H. Ding, D. Yuan,
B. Wang and C. Wang, J. Am. Chem. Soc., 2016, 138, 3302-
3305; (c) S. Dalapati, E. Jin, M. Addicoat, T. Heine and D.
Jiang, J. Am. Chem. Soc., 2016, 138, 5797-5800. (d) G. Lin, H.
Ding, R. Chen, Z. Peng, B. Wang and C. Wang, J. Am. Chem.
Soc., 2017, 139, 8705-8709.
(a) Q. Gao, X. Li, G. Ning, K. Leng, B. Tian, C. Liu, W. Tang, H.
Xu and K. P. Loh, Chem. Commun., 2018, 54, 2349-2352; (b) C.
Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang and Y. Xian, ACS Appl.
Mater. Interfaces, 2017, 9, 13415-13421; (c) W. Li, C. Yang and
X. Yan, Chem. Commun., 2017, 53, 11469-11471; (d) S. Ding,
M. Dong, Y. Wang, Y. Chen, H. Wang, C. Su and W. Wang, J.
Am. Chem. Soc., 2016, 138, 3031-3037.
7
8
R. Xue, H. Guo, T. Wang, L. Gong, Y. Wang, J. Ai, D. Huang, H.
Chen and W. Yang, Anal. Methods 2017, 9, 3737-3750.
(a) Q. Yu and J. B. Fein, Environ. Sci. Technol., 2017, 51, 14360-
14367; (b) C. Wang, L. Tian, W. Zhu, S. Wang, N. Gao, K. Zhou,
X. Yin, W. Zhang, L. Zhao and G. Li, Chem. Sci., 2018, 9, 889-
Fig. 4 (a) Photos of Au/TTB-COF, Au(0)/TTB-COF and Metallic Au. (b) UV-Vis
absorption spectra of TTB-COF (black), Au/TTB-COF (green), and Au(0)/TTB-COF
(blue) in the solid state. (c) TEM of Au(0)/TTB-COF. (d) Comparison of the Au 4f
XPS spectra of Au(0)/TTB-COF and Au/TTB-COF. (e) Reuse studies of TTB-COF for
Au ion capture in aqueous solution.
895.
9
L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem. Sci.,
2014, 5, 2789-2793.
10 F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki and O.
M. Yaghi, J. Am. Chem. Soc., 2011, 133, 11478-11481.
11 Q. Sun, B. Aguila, J. Perman, L. D. Earl, C. W. Abney, Y. Cheng,
H. Wei, N. Nguyen, L. Wojtas and S. Ma, J. Am. Chem. Soc.,
2017, 139, 2786-2793.
12 (a) L. Li, L. Li, C. Cui, H. Fan and R. Wang, ChemSusChem, 2017,
10, 4921-4926; (b) G. Gao, H. Wu, S. Ding, L. Liu and X. W. Lou,
Small, 2015, 11, 804-808.
In conclusion, we have developed an effective COF with
pendant thioether arms for selective sensing and recovery of Au
ions in water. Significantly, given the specific coordination
interactions between thioether groups and Au ions as well as
the well-defined 2D conjugated COF structures, TTB-COF
exhibits superb fluorescence sensing and capture efficiency in
ultra-low concentration Au ions detection and recovery.
Metallic Au powder with high purity can be obtained by further
reduction and pyrolysis treatments. This work not only
highlights the feasibility of sulfur-functionalized COFs for
sensing and recovery of low concentration of Au ions in water
but also stimulates further studies toward developing more
13 (a) S. Bratskaya, Y. Privar, A. Ustinov, Y. Azarova and A. Pestov,
Ind. Eng. Chem. Res., 2016, 55, 10377-10385; (b) C. Wu, X. Zhu,
Z. Wang, J. Yang, Y. Li and J. Gu, Ind. Eng. Chem. Res., 2017, 56
,
13975-13982; (c) K. Fujiwara, A. Ramesh, T. Maki, H.
Hasegawa and K. Ueda, J. Hazard. Mater. , 2007, 146, 39-50.
14 R. McCaffrey, H. Long, Y. Jin, A. Sanders, W. Park and W. Zhang,
J. Am. Chem. Soc., 2014, 136, 1782-1785.
15 M. A. Huergo, L. Giovanetti, M. S. Moreno, C. M. Maier, F. G.
Requejo, R. C. Salvarezza and C. Vericat, Langmuir, 2017, 33
6785-6793.
,
4 | Chem. Commun., 2018, 00, 1-3
This journal is © The Royal Society of Chemistry 2018
Please do not adjust margins