7
52
J.-S. Wu et al. / Spectrochimica Acta Part A 65 (2006) 749–752
2
+
[
5] H. Miyaji, J.L. Sessler, Angew. Chem. Int. Ed. 40 (2001) 154–157.
[6] D.X. Liu, J.-L. Zhang, J.-F. Fan, B.-X. Han, J. Chen, J. Phys. Chem. B 108
2004) 2851–2856.
7] J. Brunner, R. Kraemer, J. Am. Chem. Soc. 126 (2004) 13626–13627.
8] R. Kr a¨ mer, Angew. Chem. Int. Ed. 37 (1998) 772–773.
1
5
0. Therefore, the ideal pH range for the detection of Cu is
–9, since in this pH region, Cu2 causes a maximum quenching
of the fluorescence of compound 1 while the other metal cations
+
(
[
[
2+
only have a marginal effect on the detection of Cu . Such broad
pH range makes it very meaningful during miscellaneous appli-
cations, such as the detection of ions of waste water, industrial
trade analysis and physiological course, etc. Furthermore, its
water-compatibility makes it not limited under practical appli-
cations in many fields.
[9] F. Pina, M.A. Bernardo, E. Garcia-Espana, Eur. J. Inorg. Chem. (2000)
143–2157.
10] S. Kaur, S. Kumar, Chem. Commun. (2002) 2840–2841.
2
[
[
11] T. Gunnlaugsson, J.P. Leonard, K. Senechal, A.J. Harte, Chem. Commun.
(
2004) 782–783.
12] A. Torrado, G.K. Walkup, B. Imperiali, J. Am. Chem. Soc. 120 (1998)
09–610.
[
6
4
. Conclusion
[13] Y.-J. Zheng, K.M. Gatt a´ s-Asfura, V. Konka, R.M. Leblanc, Chem. Com-
mun. (2002) 2350–2351.
2
+
[14] Y.-J. Zheng, Q. Huo, P. Kele, F.M. Andreopoulos, S.M. Pham, R.M.
Leblanc, Org. Lett. 3 (2001) 3277–3280.
A Cu -sensitive fluorescent sensor based on a novel fluo-
rophore (ligand), aminonaphthol, was synthesized. It shows a
good selectivity for divalent copper over other metal cations in
aqueous solution within a wide pH range. Development of other
novel fluorescent chemosensors based on similar ligands is in
progress.
[
15] L. Fabbrizzi, M. Licchelli, P. Pallavicini, L. Parodi, A. Taglietti, in: J.-P.
Sauvage(Ed.), TransitionMetalsinSupramolecularChemistry. Perspective
in Supramolecular Chemistry, vol. 5, John Wiley & Sons Ltd., New York,
1999, p. 93.
[
[
[
16] H.-Z. Xie, S. Yi, X. Yang, S.-K. Wu, New J. Chem. 23 (1999) 1105–1110.
17] H.-P. Li, H.-Z. Xie, P.-F. Wang, S.-K. Wu, NewJ. Chem. 24(2000)105–108.
18] P.-F. Wang, N. Komatsuzaki, Y. Himeda, H. Sugihara, H. Arakawa, K.
Kasuga, Tetrahedron Lett. 42 (2001) 9199–9201.
Acknowledgements
[
19] M.-H. Mei, S.-K. Wu, New J. Chem. 25 (2001) 471–475.
We thank the Major State Basic Research Development Pro-
gram, PR China (Grant No. G2000078100) and the Chinese
Academy of Sciences for financial support.
[20] L.-L. Zhou, H. Sun, H.-P. Li, H. Wang, X.-H. Zhang, S.-K. Wu, S.-T. Lee,
Org. Lett. 6 (2004) 1071–1074.
[
[
[
21] J.-S. Wu, J.-H. Zhou, P.-F. Wang, X.-H. Zhang, S.-K. Wu, Org. Lett. 7
2005) 2133–2136.
22] M. Boiocchi, L. Fabbrizzi, M. Licchelli, D. Sacchi, M. Vazquez, C. Zampa,
Chem. Commun. (2003) 1812–1813.
23] F. Bolletta, I. Costa, L. Fabbrizzi, M. Licchelli, M. Montalti, P. Pallavicini,
L. Prodi, N. Zaccheroni, J. Chem. Soc. Dalton Trans. (1999) 1381–1385.
(
References
[
[
1] B. Valeur, I. Leray, Coord. Chem. Rev. 205 (2000) 340.
2] K. Kavallieratos, J.M. Rosenberg, W.-Z. Chen, T. Ren, J. Am. Chem. Soc.
[24] B. Valeur, Molecular Fluorescence Principles and Applications, Wiley-
VCH/Verlag/GmbH, New York, 2001, pp. 341–348.
[25] S. Otto, J.B.F.N. Engberts, J. Am. Chem. Soc. 121 (1999) 6798–6806.
[26] A.E. Martell, R.D. Hancock, Metal Complexes in Aqueous Solutions,
Plenum Press, New York, 1996.
1
27 (2005) 6514–6515.
3] S.Y. Moon, N.R. Cha, Y.H. Kim, S.-K. Chang, J. Org. Chem. 69 (2004)
81–183.
4] Z.-C. Xu, Y. Xiao, X.-H. Qian, J.-N. Cui, D.-W. Cui, Org. Lett. 7 (2005)
89–892.
[
[
1
8