achieve high enantioselectivities in asymmetric transforma-
of interest to explore their individual control on the stereo-
chemical outcome during photooxygenation. To decipher
the factors responsible for stereoselection, we synthesized
the three enecarbamates 1a-c (Scheme 2). We chose the
2
,3
tions. Asymmetric photochemistry provides an attractive
alternative to these traditional routes to produce enantiose-
lectivity. The absorption of light is utilized to generate a
short-lived electronically excited state. The stereodifferen-
tiating factors must be able to influence stereoselectivity in
the photoproduct within the short lifetime of these excited
2
,3
Scheme 2. Photooxygenation of the Structurally Rich
Oxazolidinone-Functionlized Enecarbamates 1a-c
states.
Previously, we demonstrated
4-6
1
7
2
that singlet oxygen ( O ),
an electronically excited molecule, reacts with the oxazoli-
dinone-functionalized enecarbamates 1 to form chiral me-
thyldesoxybenzoin (MDB) as a photoproduct (Scheme 1).
Scheme 1
.
Photooxygenation of Oxazolidinone-Functionalized
Enecarbamate
R-configured C-4-methyloxazolidinone chiral auxiliary for
all three enecarbamates 1a-c. As established in our previous
4
-6
investigations,
the stereoselectivity does not depend on
The quite remarkable feature about this system is its
the size of this oxazolidinone C-4 substituent. The E-1a and
Z-1b enecarbamate diastereomers were prepared with phenyl
and (R/S)-phenethyl substituents at the C-3′ position of the
alkene funtionlity. We selected enecarbamate 1c with two
identical gem-alkene substituents viz., (R/S) phenylethyl
substituent at both the C-3′ and C-3′′ positions, to eliminate
the influence of the alkene geometry on the stereoselectivity
stereodifferentiating mechanism (diastereomeric cycloaddi-
1
tion of O
2
to 1 leading to the formation of the dioxetane 2;
Scheme 1) that results in notable enantiomeric excess (%
ee) in the MDB photoproduct with ee values as high as 97%.
Furthermore, the stereoselectivity does not depend on the
oxazolidinone substituent at the stereogenic C-4 position (Me,
i
t
4-6
Pr, or Bu give the same stereoselectivity).
In contrast,
in the photooxygenation process (Scheme 2).
the alkene geometry dictates the enantiomeric excess in
1
Photooxygenation of 1 with O
2
led to dioxetane 2, without
4
-6
MDB, with the E isomer giving a much larger enantiose-
any noticeable epimerization at the stereogenic centers.
The dioxetane 2 subsequently decomposed to chiral ketone
and the oxazolidinone aldehyde 4 (Scheme 1). In the case
5,6
lectivity than the corresponding Z diastereomer. Addition-
ally, the E enecarbamates are susceptible to solvent and
temperature effects, whereas the Z diastereomers show no
3
of E-isomer 1a and Z-isomer 1b, photooxygenation resulted
in the MDB photoproduct 3a (note that 3a and 3b are the
same). Similarly, photooxygenation of 1c (Scheme 2) led to
a mixture of meso-2,4-diphenyl-3-pentanone meso-DPP-3c),
along with the corresponding dl pair (dl-DPP 3c). The DPP
photoproduct from enecarbamate 1c allows determination of
both the diastereoselectivity (between the meso and dl pairs)
and enantioselectivity (between the dl pairs) as a function
of solvent and temperature (Scheme 2).
5
,6
solvent and temperature effects.
Given the marked influence of the alkene geometry and
the C-3′ phenethyl side chain in the enecarbamates, it was
(
3) Griesbeck, A. G.; Kramer, W.; Lex, J. Angew. Chem., Int. Ed. 2001,
0, 577
4) (a) Adam, W.; Bosio, S. G.; Turro, N. J. J. Am. Chem. Soc. 2002,
4
.
(
1
2
24, 14004. (b) Adam, W.; Bosio, S. G.; Turro, N. J. J. Am. Chem. Soc.
002, 124, 8814. (c) Adam, W.; Bosio, S. G.; Turro, N. J.; Wolff, B. T. J.
Org. Chem. 2004, 69, 1704. (d) Sivaguru, J.; Poon, T.; Franz, R.; Jockusch,
S.; Adam, W.; Turro, N. J. J. Am. Chem. Soc. 2004, 126, 10816. (e)
Sivaguru, J.; Saito, H.; Solomon, M. R.; Kaanumalle, L. S.; Poon, T.;
Jockusch, S.; Adam, W.; Ramamurthy, V.; Inoue, Y.; Turro, N. J.
Photochem. Photobiol. 2006, 82, 123. (f) Solomon, M.; Sivaguru, J.;
Jockusch, S.; Adam, W.; Turro, N. J. Photochem. Photobiol. Sci. 2009, 8,
ln[1 - c(1 + ee)]
ln[1 - c(1 - ee)]
s ) (k /k ) )
(1)
R
S
9
12. (g) Solomon, M.; Sivaguru, J.; Jockusch, S.; Adam, W.; Turro, N. J.
Photochem. Photobiol. Sci. 2008, 7, 531
5) Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.;
Washington, I.; Adam, W.; Inoue, Y.; Turro, N. J. J. Am. Chem. Soc. 2004,
26, 10498
6) (a) Sivaguru, J.; Poon, T.; Hooper, C.; Saito, H.; Solomon, M.;
Jockusch, S.; Adam, W.; Inoue, Y.; Turro, N. J. Tetrahedron 2006, 62,
0647. (b) Sivaguru, J.; Saito, H.; Poon, T.; Omonuwa, T.; Franz, R.;
Jockusch, S.; Hooper, C.; Inoue, Y.; Adam, W.; Turro, N. J. Org. Lett.
005, 7, 2089. (c) Sivaguru, J.; Solomon, M. R.; Saito, H.; Poon, T.;
Jockusch, S.; Adam, W.; Inoue, Y.; Turro, N. J. Tetrahedron 2006, 62,
707. (d) Sivaguru, J.; Solomon, M. R.; Poon, T.; Jockusch, S.; Bosio, S. G.;
Adam, W.; Turro, N. J. Acc. Chem. Res. 2008, 41, 387
7) (a) Foote, C. S. Acc. Chem. Res. 1968, 1, 104. (b) Wasserman, H. H.;
.
ln(k /k ) ) ln[(100 + % ee)/(100 - % ee)]
(2)
(3)
R
S
(
1
.
q
q
q
ln(k /k ) ) ∆∆G ) ∆∆S
/R - ∆∆H
/RT
(
R
S
R-S
R-S
1
Photooxygenation of the enecarbamates 1a-c was per-
formed in three different solvents Viz., CDCl , CD OD and
CD CN at 15-18 °C. The results, tabulated in Table 1, reveal
that the E-isomer 1a favors R-MDB-3a as the photoproduct
in CDCl and CD OD (Table 1; entries 1 and 2), whereas in
2
3
3
6
3
.
(
3
3
Murray, R. W. Singlet Oxygen; Academic: New York, 1979. (c) Frimer,
A. A. Singlet Oxygen; CRC: Boca Raton, 1985; Vols. 1-4.
CD
3
CN (Table 1; entry 3) the optical antipode S-MDB-3a
Org. Lett., Vol. 12, No. 9, 2010
2143