Communication
ChemComm
surface in the SFA measurements estimated based on the hydro- Notes and references
dynamic radii of the proteins (1.9 nm and 3.3 nm for Mfp3 and MS,
1 M. Xu and R. V. Lewis, Proc. Natl. Acad. Sci. U. S. A., 1990, 87,
7120–7124.
2 F. Vollrath, J. Biotechnol., 2000, 74, 67–83.
3 L. Romer and T. Scheibel, Prion, 2008, 2, 154–161.
4 X. Hu, K. Vasanthavada, K. Kohler, S. McNary, A. M. Moore and
C. A. Vierra, Cell. Mol. Life Sci., 2006, 63, 1986–1999.
5 S. W. Cranford, A. Tarakanova, N. M. Pugno and M. J. Buehler,
Nature, 2012, 482, 72–76.
respectively), measured by diffusion-ordered spectroscopy (DOSY)
in D2O (Fig. S4, see ESI† for detail), the number of MS molecules
can be 2.9-fold fewer than that of Mfp3. The adhesion energy per
protein molecule of MS is 2.5-fold greater than that of Mfp3. In
other words, one protein molecule of MS can be 2.5-fold more
adhesive than that of Mfp3.
6 T. Scheibel, Microb. Cell Fact., 2004, 3, 14.
Taken together, a recombinant protein of MS containing Mfp3
and MaSp1 motifs showed significantly enhanced adhesiveness
compared to MaSp1 alone. Such enhanced underwater adhesiveness
of MS seems to be due to the molecular basis of the recombinant
protein. Specifically, the genetic fusion of Mfp3 into MaSp1 yields
more elastic and underwater sticky self-assembled fibres with
presentation of DOPA moieties. Higher elasticity induced by the
formation of supramolecular structures probably plays a central
role in alleviating both cohesive and adhesive stress of MS by
better dissipating energy across protein molecules.
7 B. P. Lee, P. B. Messersmith, J. N. Israelachvili and J. H. Waite, Annu.
Rev. Mater. Res., 2011, 41, 99–132.
8 A. H. Hofman, I. A. van Hees, J. Yang and M. Kamperman, Adv.
Mater., 2018, 30, 1704640.
9 Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T. H. Anderson,
J. H. Waite and J. N. Israelachvili, Proc. Natl. Acad. Sci. U. S. A., 2007,
104, 3782–3786.
10 G. P. Maier, M. V. Rapp, J. H. Waite, J. N. Israelachvili and A. Butler,
Science, 2015, 349, 628–632.
11 M. R. Kim and T. G. Park, J. Controlled Release, 2002, 80, 69–77.
12 M. Brodie, L. Vollenweider, J. L. Murphy, F. Xu, A. Lyman, W. D. Lew
and B. P. Lee, Biomed. Mater., 2011, 6, 015014.
13 A. K. Gaharwar, S. A. Dammu, J. M. Canter, C. J. Wu and G. Schmidt,
Biomacromolecules, 2011, 12, 1641–1650.
In summary, we demonstrated a recombinant protein-based
bio-adhesive by inserting one natural protein into another,
namely Mfp3 into MaSp1. The resulting spidroin-based protein
forming an elastic fibril structure showed underwater adhesiveness
because of the mussel foot protein motif. The enhanced properties
were confirmed by dynamic mechanical analysis with a rheometer
and underwater adhesion measurement by SFA. In principle, the
number of DOPA moieties in the protein can be increased
by enhancing the conversion of DOPA from tyrosine in the
protein with adopting longer glycine-serine linkers in genetic
design or in vivo residue-specific incorporation of DOPA using
misaminoacylation;31 thus the adhesiveness of the biomaterials
can be further improved. This study may provide new insights
for the design of underwater adhesive recombinant proteins
based on the structural features of a spidroin protein, which
can be potentially useful for various bioapplications including
biomedical uses such as glues for soft tissues.
14 B. P. Lee and S. Konst, Adv. Mater., 2014, 26, 3415–3419.
15 B. K. Ahn, D. W. Lee, J. N. Israelachvili and J. H. Waite, Nat. Mater.,
2014, 13, 867–872.
16 L. Han, X. Lu, K. Liu, K. Wang, L. Fang, L. T. Weng, H. Zhang,
Y. Tang, F. Ren, C. Zhao, G. Sun, R. Liang and Z. Li, ACS Nano, 2017,
11, 2561–2574.
17 Q. Zhu and Q. Pan, ACS Nano, 2014, 8, 1402–1409.
18 J. Horsch, P. Wilke, M. Pretzler, M. Seuss, I. Melnyk, D. Remmler,
A. Fery, A. Rompel and H. G. Borner, Angew. Chem., Int. Ed., 2018,
DOI: 10.1002/anie.201809587.
19 R. J. Stewart, T. C. Ransom and V. Hlady, J. Polym. Sci., Part B: Polym.
Phys., 2011, 49, 757–771.
20 S. C. Warner and J. H. Waite, Mar. Biol., 1999, 134, 729–734.
21 O. Tokareva, M. Jacobsen, M. Buehler, J. Wong and D. L. Kaplan,
Acta Biomater., 2014, 10, 1612–1626.
22 R. Trinh, B. Gurbaxani, S. L. Morrison and M. Seyfzadeh, Mol.
Immunol., 2004, 40, 717–722.
23 P. N. Hengen, Trends Biochem. Sci., 1995, 20, 285–286.
24 C. Zhong, T. Gurry, A. A. Cheng, J. Downey, Z. T. Deng, C. M. Stultz
and T. K. Lu, Nat. Nanotechnol., 2014, 9, 858–866.
25 M. J. C. Long and L. Hedstrom, ChemBioChem, 2012, 13, 1818–1825.
26 P. B. Issopoulos, Pharm. Weekbl., 1989, 11, 213–217.
27 Y. Kim, W. Li, S. Shin and M. Lee, Acc. Chem. Res., 2013, 46,
2888–2897.
28 Z. Huang, S. K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok,
E. Yashima and M. Lee, Science, 2012, 337, 1521–1526.
29 B. Sun, Y. Kim, Y. Q. Wang, H. X. Wang, J. Kim, X. Liu and M. Lee,
Nat. Mater., 2018, 17, 599–604.
This work was supported by the Institute for Basic Science (IBS)
[IBS-R007-D1] (to K. K.) and Marine Biotechnology Program of the
Korea Institute of Marine Science and Technology Promotion
funded by the Ministry of Oceans and Fisheries (to H. J. C.).
30 B. Yang, C. Lim, D. S. Hwang and H. J. Cha, Chem. Mater., 2016, 28,
7982–7989.
31 B. Yang, N. Ayyadurai, H. Yun, Y. S. Choi, B. H. Hwang, J. Huang,
Q. Lu, H. Zeng and H. J. Cha, Angew. Chem., Int. Ed., 2014, 53,
13360–13364.
Conflicts of interest
There are no conflicts to declare.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12642--12645 | 12645