Vol. 32, No. 2 (2020) Biological Evolution of Titanium(IV) Complex [{(NNO)
2
Ti}
3
O ] Bearing Bidentate Heteroditopic Schiff Base Ligand 449
3
6
7
.
.
P.M. Abeysinghe and M.M. Harding, Dalton Trans., 3474 (2007);
https://doi.org/10.1039/b707440a.
F. Caruso, M. Rossi and C. Pettinari, Expert Opin. Ther. Pat., 11, 969
(2001);
https://doi.org/10.1517/13543776.11.6.969.
J. Bhattacharjee, S. Das, R.K. Kottalanka and T.K. Panda, Dalton Trans.,
4
Conclusion
In this study, synthesis of tri-nuclear Ti(IV)-complex of
type [{(NNO) Ti} ] (2) was well demonstrated. To evaluate
biological significance of synthesized Ti-complex (2) along
with corresponding bidentate heteroditopic Schiff base ligand
2
O
3 3
8
.
5, 17824 (2016);
https://doi.org/10.1039/C6DT03063G.
9. F. Caruso and M. Rossi, Met. Ions Biol. Syst., 42, 353 (2004).
[(C
5 4
H OH)-N=CH-C
4
H -NH] (L1), we studied systematically
3
in vitro cytotoxicity activity by using MTT assay on cancer
cell lines viz. human breast carcinoma (MCF-7) and human
lung carcinoma (A549) and normal cell lines such as human
keratinocytes (HaCaT). The results demonstrated that Ti(IV)-
complex (2) displayed significant cytotoxicity compared to
standard anticancer drug (i.e. cisplatin). The enhanced cyto-
toxicity of Ti-complex (2) was further supported by the LDH
and nitric oxide assay by releasing significant amount LDH
and NO. The in vitro antibacterial and antifungal activity
studies revealed that Ti-complex (2) having enhanced anti-
bacterial activity due to its increased lipophilic character and
it was found to be more toxic than Schiff base ligand (L1). At
higher concentration (100 µg/mL) both Schiff base ligand (L1)
and Ti-complex (2) were found to be more toxic towards fungi
cells. Furthermore, DNA binding studies were performed by
using UV-visible and fluorescence investigations to evaluate
the binding capacity of the tested compounds with Ct-DNA
helix revealed that Ti-complex (2) is having significant inter-
actions than the heteroditopic Schiff base ligand (L1). The
molecular docking studies also conformed that significant
hydrogen bonding interactions (N-H---O type) with Asp81
were observed when heteroditopic Schiff base ligand (LI) was
subjected to docking studies with protein molecule. From all
these studies, it is concluded that the synthesized tri-nuclear
1
0. B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten and E. Vogel,
Bioinorganic Chemistry, Springer; Berlin Heidelberg, Berlin, Heidelberg,
vol. 78. pp. 97–127 (1991).
1. E.Y. Tshuva and J.A. Ashenhurst, Eur. J. Inorg. Chem., 2195 (2009);
https://doi.org/10.1002/ejic.200990038.
1
12. E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009);
https://doi.org/10.1016/j.ccr.2008.11.015.
3. I. Kostova, Anti-Cancer Agents, 9, 827 (2009);
1
https://doi.org/10.2174/187152009789124646.
5. S.A. Loza-Rosas, M. Saxena, Y. Delgado, K. Gaur, M. Pandrala and
A.D. Tinoco, Metallomics, 9, 346 (2017);
https://doi.org/10.1039/C6MT00223D.
6. J.-Y. Chung, Y.S. Werner and R. Thiel, J. Organomet. Chem., 829, 31
(2017);
https://doi.org/10.1016/j.jorganchem.2016.10.035.
7. E.Y. Tshuva and M. Miller, Coordination Complexes of Titanium(IV)
for Anticancer Therapy, In: Metal Ions in Life Sciences, Walter de
Gruyter GmbH & Co KG, vol. 18, p. 219-249 (2018).
1
1
1
18. K.M. Buettner and A.M. Valentine, Chem. Rev., 112, 1863 (2012);
https://doi.org/10.1021/cr1002886.
9. K. Strohfeldt and M. Tacke, Chem. Soc. Rev., 37, 1174 (2008);
https://doi.org/10.1039/b707310k.
0. P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987);
https://doi.org/10.1021/cr00081a012.
1. J.H. Toney and T.J. Marks, J. Am. Chem. Soc., 107, 947 (1985);
https://doi.org/10.1021/ja00290a033.
2. F. Caruso, L. Massa, A. Gindulyte, C. Pettinari, F. Marchetti, R. Pettinari,
M. Ricciutelli, J. Costamagna, J.C. Canales, J. Tanski and M. Rossi,
Eur. J. Inorg. Chem., 2003, 3221 (2003);
1
2
2
2
Ti-complex [{(NNO)
2
Ti}
3
3
O ] (2) was found to be active anti-
bacterial/fungal and anticancer agent.
https://doi.org/10.1002/ejic.200300135.
ACKNOWLEDGEMENTS
23. M. Cini, T.D. Bradshaw and S. Woodward, Chem. Soc. Rev., 46, 1040
2017);
(
This work is supported by the VFSTR (Deemed to be
University), Vadlamudi, India under the scheme of seed grant
for research faculty. Two of the authors, Eswar and Shiva thanks
to VFSTR for providing facilities and fellowship.
https://doi.org/10.1039/C6CS00860G.
4. M. Shavit, D. Peri, C.M. Manna, J.S. Alexander and E.Y. Tshuva, J. Am.
Chem. Soc., 129, 12098 (2007);
https://doi.org/10.1021/ja0753086.
5. D. Peri, S. Meker, M. Shavit and E.Y. Tshuva, Chem. Eur. J., 15, 2403
2
2
2
2
2
(
2009);
CONFLICT OF INTEREST
https://doi.org/10.1002/chem.200801310.
6. D. Peri, S. Meker, C.M. Manna and E.Y. Tshuva, Inorg. Chem., 50, 1030
The authors declare that there is no conflict of interests
regarding the publication of this article.
(
2011);
https://doi.org/10.1021/ic101693v.
7. C.M. Manna, O. Braitbard, E. Weiss, J. Hochman and E.Y. Tshuva,
ChemMedChem, 7, 703 (2012);
https://doi.org/10.1002/cmdc.201100593.
8. T.A. Immel, U. Groth, T. Huhn and P. Öhlschläger, PLoS One, 6, 17869
REFERENCES
1
2
.
.
N. Ganot, O. Briaitbard, A. Gammal, J. Tam, J. Hochman and Y.E.
Tshuva, ChemMedChem, 13, 2290 (2018);
https://doi.org/10.1002/cmdc.201800551.
R.S.S. Azevedo, J.R. de Sousa, M.T.F. Araujo, A.J. Martins Filho, B.N.
de Alcantara, F.M.C. Araujo, M.G.L. Queiroz, A.C.R. Cruz, B.H.B.
Vasconcelos, J.O. Chiang, L.C. Martins, L.M.N. Casseb, E.V. da Silva,
V.L. Carvalho, B.C.B. Vasconcelos, S.G. Rodrigues, C.S. Oliveira,
J.A.S. Quaresma and P.F.C. Vasconcelos, Sci. Rep., 8, 1 (2018);
https://doi.org/10.1038/s41598-017-17765-5.
(
2011);
https://doi.org/10.1371/journal.pone.0017869.
2
3
9. T.A. Immel, U. Groth and T. Huhn, Chem. Eur. J., 16, 2775 (2010);
https://doi.org/10.1002/chem.200902312.
0. M. Miller, O. Braitbard, J. Hochman and E.Y. Tshuva, J. Inorg. Biochem.,
1
63, 250 (2016);
https://doi.org/10.1016/j.jinorgbio.2016.04.007.
1. S.L. Hancock, R. Gati, M.F. Mahon, E.Y. Tshuva and M.D. Jones, Dalton
Trans., 43, 1380 (2014);
https://doi.org/10.1039/C3DT52583J.
2. S. Meker, C.M. Manna, D. Peri and E.Y. Tshuva, Dalton Trans., 40,
3
3
3
3
4
.
.
I. Ott and R. Gust, Arch. Pharm., 340, 117 (2007).
M. Tacke, L.T. Allen, L. Cuffe, W.M. Gallagher, Y. Lou, O. Mendoza,
H. Müller-Bunz, F.-J.K. Rehmann and N. Sweeney, J. Organomet.
Chem., 689, 2242 (2004);
9802 (2011);
https://doi.org/10.1016/j.jorganchem.2004.04.015.
https://doi.org/10.1039/c1dt11108f.
5
.
R. Kaushal, N. Kumar,A. Chaudhary, S.Arora and P.Awasthi, Bioinorg.
Chem. Appl., 2014, Article ID, 1428281 (2014);
3. H. Glasner and E.Y. Tshuva, J. Am. Chem. Soc., 133, 16812 (2011);
https://doi.org/10.1021/ja208219f.
https://doi.org/10.1155/2014/142828.