PCCP
Paper
On a qualitative level it seems obvious that one-electron oxida- Notes and references
tion of phenol proceeds at less positive potentials than oxida-
1 T. J. Meyer, Acc. Chem. Res., 1989, 22, 163.
tion of 4-cyanophenol hence an ET–PT mechanism is inherently
2 J. M. Mayer, Annu. Rev. Phys. Chem., 2004, 55, 363.
3 S. Y. Reece and D. G. Nocera, Annu. Rev. Biochem., 2009,
78, 673.
4 S. Hammes-Schiffer, Acc. Chem. Res., 2009, 42, 1881.
5 J. L. Dempsey, J. R. Winkler and H. B. Gray, Chem. Rev.,
2010, 110, 7024.
more likely for PhOH–Ru2+ than for CN–PhOH–Ru2+.
We conclude that in PhOH–Ru2+ the rate-determining
photochemical reaction step is most likely the ET step of an
ET–PT sequence, but a CPET mechanism cannot be ruled out
completely. In a scenario in which both dyads react via a rate-
determining CPET step, the difference in reaction rates (139 ns vs.
17 ns) could easily be explained by the difference in O–H bond
dissociation free energies between 4-cyanophenol (92.6 kcal molꢁ1
in DMSO) and phenol (88.3 kcal molꢁ1 in DMSO).12
´
6 C. Costentin, M. Robert and J.-M. Saveant, Acc. Chem. Res.,
2010, 43, 1019.
¨
7 L. Hammarstrom and S. Styring, Energy Environ. Sci., 2011,
4, 2379.
8 D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy,
C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G.
McCafferty and T. J. Meyer, Chem. Rev., 2012, 112, 4016.
9 I. J. Rhile and J. M. Mayer, J. Am. Chem. Soc., 2004, 126, 12718.
10 I. J. Rhile, T. F. Markle, H. Nagao, A. G. DiPasquale, O. P. Lam,
M. A. Lockwood, K. Rotter and J. M. Mayer, J. Am. Chem. Soc.,
2006, 128, 6075.
11 T. F. Markle, I. J. Rhile, A. G. DiPasquale and J. M. Mayer,
Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 8185.
12 J. J. Warren, T. A. Tronic and J. M. Mayer, Chem. Rev., 2010,
110, 6961.
13 L. Biczok, N. Gupta and H. Linschitz, J. Am. Chem. Soc.,
1997, 119, 12601.
14 J. L. Cape, M. K. Bowman and D. M. Kramer, J. Am. Chem.
Soc., 2005, 127, 4208.
15 J. J. Concepcion, M. K. Brennaman, J. R. Deyton, N. V. Lebedeva,
M. D. E. Forbes, J. M. Papanikolas and T. J. Meyer, J. Am. Chem.
Soc., 2007, 129, 6968.
Summary and conclusions
PCET between 4-cyanophenol or phenol and photoexcited
2+
Ru(bpz)3 has been explored in two different settings, namely
in bimolecular reactions resembling hydrogen atom transfer
(Scheme 1a) and in multi-site PCET reactions with covalent dyads
(Scheme 1b). The bimolecular reactions shown in Scheme 1a are
clear-cut cases of concerted PCET processes. The new dyads
shown in Scheme 1b exhibit apparent photoacid behavior which
can only be explained by a sequence of photoinduced PCET
followed by a thermal electron transfer event in the reverse
direction (Scheme 3). An H/D kinetic isotope effect of 2.0 ꢀ 0.2
for CN–PhOH–Ru2+ indicates that the rate-determining step in
this dyad is a concerted proton–electron release at 4-cyanophenol.
This KIE is markedly lower than that of the bimolecular reaction
between 4-cyanophenol and Ru(bpz)32+ (10.2 ꢀ 0.6), but of course
the proton acceptors in the two different scenarios are not the
same (H2O versus a bpz ligand). For PhOH–Ru2+ no significant
H/D KIE is detected hence the initial PCET reaction is most likely
comprised of a rate-determining electron release followed by
subsequent deprotonation of a phenoxyl radical cation before
16 J. Bonin, C. Costentin, C. Louault, M. Robert and J. M.
´
Saveant, J. Am. Chem. Soc., 2011, 133, 6668.
´
17 J. Bonin, C. Costentin, M. Robert and J. M. Saveant, Org.
Biomol. Chem., 2011, 9, 4064.
+
thermal back electron transfer from Ru(bpz)3 produces the
´
18 C. Costentin, M. Robert and J. M. Saveant, Phys. Chem.
observable phenolate photoproduct. The photochemical beha-
vior of the PhOH–Ru2+ dyad thus appears to be in contrast to
the bimolecular reaction between phenol and photoexcited
Ru(bpz)32+ (Scheme 1a) which involves concerted proton–electron
release at the phenol.
Chem. Phys., 2010, 12, 11179.
19 N. V. Lebedeva, R. D. Schmidt, J. J. Concepcion, M. K.
Brennaman, I. N. Stanton, M. J. Therien, T. J. Meyer and
M. D. E. Forbes, J. Phys. Chem. A, 2011, 115, 3346.
¨
20 A. Magnuson, H. Berglund, P. Korall, L. Hammarstrom,
The photochemical reaction sequence occurring in our dyads is
conceptually identical to a sequence of photoinduced charge-
separation and thermal charge-recombination events as previously
reported for many electron transfer dyads. The key characteristic of
the dyads shown in Scheme 1b is that the initial photoinduced
charge-separation event is proton-coupled, involving either con-
certed proton–electron transfer (CN–PhOH–Ru2+) or a sequence of
ET and PT events (PhOH–Ru2+).
B. Åkermark, S. Styring and L. C. Sun, J. Am. Chem. Soc.,
1997, 119, 10720.
¨
¨
21 O. Johansson, H. Wolpher, M. Borgstrom, L. Hammarstrom,
J. Bergquist, L. C. Sun and B. Åkermark, Chem. Commun.,
2004, 194.
22 T. Lachaud, A. Quaranta, Y. Pellegrin, P. Dorlet, M. F.
Charlot, S. Un, W. Leibl and A. Aukauloo, Angew. Chem.,
Int. Ed., 2005, 44, 1536.
¨
23 T. Irebo, S. Y. Reece, M. Sjodin, D. G. Nocera and
¨
L. Hammarstrom, J. Am. Chem. Soc., 2007, 129, 15462.
Acknowledgements
24 G. F. Moore, M. Hambourger, M. Gervaldo, O. G. Poluektov,
T. Rajh, D. Gust, T. A. Moore and A. L. Moore, J. Am. Chem.
Soc., 2008, 130, 10466.
This work was supported by the Swiss National Science Foun-
dation (grant number 200021_146231/1). Pierre Dechambenoit
´
¨
(Universite de Bordeaux) is thanked for acquiring the X-ray 25 T. Irebo, O. Johansson and L. Hammarstrom, J. Am. Chem.
diffraction data.
Soc., 2008, 130, 9194.
This journal is ©the Owner Societies 2014
Phys. Chem. Chem. Phys., 2014, 16, 3617--3622 | 3621