Organometallics
Article
molecules in the polar region Nw, and the hydrophilic electron density
ρh. To do so, we have set the number of electrons of the hydrophobic
region as the total number of electrons of the molecule minus that of
the polar head, which we have fixed as corresponding to the sulfonate
group and one methylene.
(3) Griffiths, P. C.; Fallis, I. A.; Chuenpratoom, T.; Watanesk, R. Adv.
Colloid Interface Sci. 2006, 122, 107−117.
(4) (a) Fell, B.; Pagadogianakis, G. J. Mol. Catal. 1991, 66, 143−154.
(b) Ding, H.; Hanson, B. E.; Bakos, J. Angew. Chem., Int. Ed. Engl.
1995, 34, 1645−1647. (c) Gulyas, H.; Arva, P.; Bakos, J. Chem.
Commun. 1997, 24, 2385−2386. (d) Goedheijt, M. S.; Hanson, B. E.;
Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Am. Chem.
Soc. 2000, 122, 1650−1657.
Measurement of CO Release. The CO release from the
metallosurfactant molecules was measured by means of the myoglobin
assay,38 which is based on the high affinity of this protein for the CO
dissolved in an aqueous medium. A solution of reduced myoglobin
(deoxy-Mb) 53 μM in phosphate biological saline buffer (PBS;
previously degassed by bubbling N2) at pH 7.4 was obtained by adding
sodium dithionite at a final concentration of 1% w/w and, afterward,
bubbling N2 again. To obtain a spectrum between 250 and 650 nm, a
spectrophotometer cuvette was filled with an aliquot of this solution
and capped to avoid any entrance of air. The obtained curve
corresponded to a reference sample with no CO bound to Mb and
showed a local maximum at 556 nm. To obtain the spectrum of the
totally CO-saturated Mb (that is, 53 μM of CO-Mb), an aliquot of the
previous solution was intensely bubbled with CO. In this case the
curve showed two local maxima, located at 540 and 580 nm. Both
spectra, from deoxy-Mb and CO-Mb, shared four isosbestic points, at
510, 550, 570, and 585 nm. The release of CO from the samples was
monitored by obtaining the spectra of an aliquot of the previously
described deoxy-Mb solution containing the tested metallosurfactant
at a concentration of 250 μM and at 37 °C. After correction of the
spectra taking into account the isosbestic points, the concentration of
CO-Mb was quantified from the absorbance at 540 nm.
(5) Parera, E.; Comelles, F.; Barnadas, R.; Suades, J. Langmuir 2010,
26, 743−751.
(6) (a) Bhattacharya, S.; Kumari, N. Coord. Chem. Rev. 2009, 253,
2133−2149. (b) Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U.
Coord. Chem. Rev. 2009, 253, 2150−2165. (c) Zhang, J.; Meng, X.;
Zeng, X.; Yu, X. Coord. Chem. Rev. 2009, 253, 2166−2177. (d) Li, J.;
Tang, Y.; Wang, Q.; Li, X.; Cun, L.; Zhang, X.; Zhu, J.; Li, L.; Deng, J.
J. Am. Chem. Soc. 2012, 134, 18522−18525. (e) Chakravarthy, R. D.;
Ramkumar, V.; Chand, D. K. Green Chem. 2014, 16, 2190−2196.
(7) (a) Amos, K. E.; Brooks, N. J.; King, N. C.; Xie, S.; Canales-
́
Vazquez, J.; Danks, M. J.; Jervis, H. B.; Zhou, W.; Seddon, J. M.; Bruce,
D. W. J. Mater. Chem. 2008, 18, 5282−5292. (b) Botelho, M.;
Fernandez-Hernandez, J.; Branquinho de Queiroz, T.; Eckert, H.; De
Cola, L.; de Camargo, A. J. Mater. Chem. 2011, 21, 8829−8834.
(c) Hondow, N.; Harowfield, J.; Koutsantonis, G.; Nealon, G.;
Saunders, M. Microporous Mesoporous Mater. 2012, 151, 264−270.
(8) (a) Donnio, B. Curr. Opin. Colloid Interface Sci. 2002, 7, 371−394.
(b) Iida, M.; Inoue, M.; Tanase, T.; Takeuchi, T.; Sugibayashi, M.;
Ohta, K. Eur. J. Inorg. Chem. 2004, 19, 3920−3929. (c) Cardinaels, T.;
Ramaekers, J.; Driesen, K.; Nockemann, P.; Van Hecke, K.; Van
Meervelt, L.; Goderis, B.; Binnemans, K. Inorg. Chem. 2009, 48, 2490−
2499.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(9) (a) Nazeeruddin, M. K.; Zakeeruddin, S. M.; Lagref, J. J.; Liska,
P.; Comte, P.; Barolo, C.; Viscardi, G.; Schenk, K.; Graetzel, M. Coord.
Chem. Rev. 2004, 248, 1317−1328. (b) Jayathilake, H. D.; Driscoll, J.
A.; Bordenyuk, A. N.; Wu, L.; da Rocha, S. R. P.; Verani, C. N.;
Benderskii, A. V. Langmuir 2009, 25, 6880−6886. (c) Lesh, F. D.;
Allard, M. M.; Shanmugam, R.; Hryhorczuk, L. M.; Endicott, J. F.;
Schlegel, H. B.; Verani, C. N. Inorg. Chem. 2011, 50, 969−977.
(d) Mauro, M.; De Paoli, G.; Otter, M.; Donghi, D.; D’Alfonso, G.; De
Cola, L. Dalton Trans. 2011, 40, 12106−12116. (e) Fernandez-
Hernandez, J. M.; De Cola, L.; Bolink, H. J.; Clemente-Leon, M.;
Coronado, E.; Forment-Aliaga, A.; Lopez-Munoz, A.; Repetto, D.
Langmuir 2014, 30, 14021−14029.
Spectroscopic data for complexes 4−9; surface excess
concentration and the estimated area per molecule for
compounds 1−9; molecular parameters of macro-
molecular aggregates obtained by SAXS for compounds
1, 4, and 7; excluded volume routine procedure (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
(10) Joy, S.; Pal, P.; Mondal, T. K.; Talapatra, G. B.; Goswami, S.
Chem. - Eur. J. 2012, 18, 1761−1771.
(11) (a) Iida, M.; Baba, C.; Inoue, M.; Yoshida, H.; Taguchi, E.;
Furusho, H. Chem. - Eur. J. 2008, 14, 5047−5056. (b) Ye, S.; Liu, Y.;
Chen, S.; Liang, S.; McHale, R.; Ghasdian, N.; Lu, Y.; Wang, X. Chem.
Commun. 2011, 47, 6831−6833. (c) Kaur, R.; Mehta, S. K. Coord.
Chem. Rev. 2014, 262, 37−54.
Author Contributions
‡
́
́
E. Parera and M. Marın-Garcıa have contributed equally to
this work.
Notes
(12) Mechler, A.; Stringer, B. D.; Mubin, M. S. H.; Doeven, E. H.;
Phillips, N. W.; Rudd-Schmidt, J.; Hogan, C. F. Biochim. Biophys. Acta,
Biomembr. 2014, 1838, 2939−2946.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(13) Aiad, I. A.; Badawi, A. M.; El-Sukkary, M. M.; El-Sawy, A. A.;
Adawy, A. I. J. Surfactants Deterg. 2012, 15, 223−234.
■
We acknowledge Mr. Jaume Caelles from the SAXS-WAXS
service at IQAC for measurements. This research was
supported by the Spanish MINECO and FEDER funds
through the projects BIO2012-39682-C02-02 and MINECO-
CTQ2013-41514-P.
́
(14) (a) Vaccaro, M.; Mangiapia, G.; Radulescu, A.; Schillen, K.;
D’Errico, G.; Morelli, G.; Paduano, L. Soft Matter 2009, 5, 2504−2512.
(b) Gong, P.; Chen, Z.; Chen, Y.; Wang, W.; Wang, X.; Hu, A. Chem.
Commun. 2011, 47, 4240−4242. (c) Chen, Y.; Zhu, Q.; Tian, Y.; Tang,
W.; Pan, F.; Xiong, R.; Yuan, Y.; Hu, A. Polym. Chem. 2015, 6, 1521−
1526.
REFERENCES
(15) (a) Cheng, Z.; Ren, B.; Gao, M.; Liu, X.; Tong, Z.
Macromolecules 2007, 40, 7638−7643. (b) Tsuchiya, K.; Yajima, H.;
Sakai, H.; Abe, M. Electrical Phenomena at Interfaces and Biointerfaces,
Ohshima, H., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, 2012; pp
567−582.
(16) Thanasekaran, P.; Wu, J. Y.; Manimaran, B.; Rajendran, T.;
Chang, I. J.; Rajagopal, S.; Lee, G. H.; Peng, S. M.; Lu, K. L. J. Phys.
Chem. A 2007, 111, 10953−10960.
■
(1) (a) Scrimin, P.; Tecilla, P.; Tonellato, U.; Vendrame, T. J. Org.
Chem. 1989, 54, 5988−5991. (b) Ghirlanda, G.; Scrimin, P.; Kaifer, A.
E.; Echegoyen, L. A. Langmuir 1996, 12, 3695−3701. (c) Fallis, I. A.;
Griffiths, P. C.; Griffiths, P. M.; Hibbs, D. E.; Hursthouse, M. B.;
Winnington, A. L. Chem. Commun. 1998, 6, 665−666.
(2) Valls, E.; Solsona, A.; Suades, J.; Mathieu, R.; Comelles, F.;
́
Lopez-Iglesias, C. Organometallics 2002, 21, 2473−2480.
I
Organometallics XXXX, XXX, XXX−XXX