2302
J . Org. Chem. 2001, 66, 2302-2311
A Stu d y of F a ctor s Affectin g r-(N-Ca r ba m oyl)a lk ylcu p r a te
Ch em istr y
R. Karl Dieter,* Chris M. Topping, and Lois E. Nice
Hunter Laboratory, Department of Chemistry, Clemson University, Clemson, South Carolina 29634-1905
dieterr@clemson.edu
Received October 4, 2000
The effect of Cu(I) salt (i.e., CuCN, CuCN‚2LiCl, CuI), cuprate reagent, sec-butyllithium quality,
solvent, and temperature upon the chemical yields obtained in the reactions of R-(N-carbamoyl)-
alkylcuprates [i.e., N-Boc-protected R-aminoalkylcuprates] with (E)1-iodo-1-hexene, 5,5-dimethyl-
2-cyclohexenone, methylvinyl ketone, crotonate esters, and an acid chloride has been examined.
Cuprate conjugate addition and vinylation reactions can succeed with low-quality sec-butyllithium,
presumably containing insoluble lithium hydride and lithium alkoxide impurities, although yields
are significantly lower than those obtained with high-quality s-BuLi. R-(N-Carbamoyl)alkylcuprates
prepared from high-quality sec-butyllithium are thermally stable for 2-3 h at room temperature
and are equally effective when prepared from either insoluble CuCN or THF-soluble CuCN‚2LiCl.
Use of the latter reagent permits rapid cuprate formation at -78 °C, thereby avoiding the higher
temperatures required for cuprate formation from THF-insoluble CuCN that are problematic with
solutions containing thermally unstable R-lithiocarbamates.
In tr od u ction
salt often plays a significant role in the chemistry of the
resultant organocopper and cuprate reagents, and CuCN
and CuBr‚SMe2 have been promoted as the best Cu(I)
precursors.4 Organocopper reagents prepared from CuCN
and either 1 or 2 equiv of an alkyllithium reagent often
display superior attributes with regard to chemical yields,
suggesting an important role of the cyanide anion.1a The
structure of the latter reagent has been the subject of
considerable controversy centering around the location
of the cyanide ion.5 Although THF-soluble CuCN‚2LiCl
has been extensively used by Knochel in the copper-
promoted reactions of organozinc reagents,6 this source
of Cu(I) has not been widely used in the generation of
cuprates from alkyllithium or Grignard reagents.7 The
use of CuCN‚2LiCl appeared to be crucial for the conju-
gate addition8 and coupling reactions9 of R-(N-carbamoyl)-
alkylcuprates with R,â-unsaturated carboxylic acid de-
rivative and vinyl iodides, respectively. This plethora of
effects generally necessitates an empirical development
of optimal conditions for any particular reaction.
Although they effect a wide range of transformations
and are widely employed in synthesis, organocopper
reagents have a well-earned reputation for capriciousness
and sensitivity to reaction conditions.1 They are incom-
patible with air, moisture, and oxidants and often display
thermal instability in the same temperature region in
which the desired transformation occurs.2 Reactivity,
chemical yields, and regio- and stereoselectivity of orga-
nocopper-mediated reactions are dependent upon solvent,
additives (e.g., Lewis acids, TMSCl, TMSCl/HMPA, etc.),1,3
co-metal (e.g., Li, Mg, Zn), and the Cu(I) salt4 used in
reagent preparation, as well as the particular reagent
employed (e.g., Gilman reagents, mixed homocuprates,
heterocuprates, organocopper reagents). The copper(I)
* To whom correspondence should be addressed. Fax: 864-656-6613.
(1) For reviews on organocopper chemistry, see: (a) Lipshutz, B.
H.; Sengupta, S. Org. React. 1992, 41, 135. (b) Lipshutz, B. H. In
Organometallics in Synthesis: A Manual; Schlosser, M., Ed.; J ohn
Wiley & Sons: Chichester, 1994; Chapter 4. (c) Organocopper Re-
agents: A Practical Approach; Taylor, R. J . K., Ed.; Oxford University
Press: Oxford, 1994.
(2) For studies on the thermal stability of cuprates, see: (a) Posner,
G. H.; Whitten, C. E.; Sterling, J . J . J . Am. Chem. Soc. 1973, 95, 7788.
(b) Bertz, S. H.; Dabbagh, G. J . Chem. Soc., Chem. Commun. 1982,
1030.
(3) For the effect of additives, see: TMSCl: (a) Boaz, N. W.; Corey,
E. J . Tetrahedron Lett. 1985, 26, 6019. (b) Alexakis, A.; Berlan, J .;
Besace, Y. Tetrahedron Lett. 1986, 27, 1047. (c) J ohnson, C. R.; Marren,
T. J . Tetrahedron Lett. 1987, 28, 27. (d) Lindstedt, E.-L.; Nilsson, M.;
Olsson, T. J . Organomet. Chem. 1987, 334, 255. (e) Lipshutz, B. H.;
Ellsworth, E. L.; Siahaan, T. J .; Shirazi, A. Tetrahedron Lett. 1988,
29, 6677. (f) Bertz, H. B.; Miao, G.; Rossiter, B. E.; Snyder, J . P. J .
Am. Chem. Soc. 1995, 117, 11023. (g) Frantz, D. E.; Singleton, D. A.
J . Am. Chem. Soc. 2000, 122, 3288; and references therein. TMSCl/
HMPA or TMSCl/DMAP: (h) Matsuzawa, S.; Horiguchi, Y.; Nakamura,
E.; Kuwajima, I. Tetrahedron 1989, 45, 349. Lewis acids: (i) Yama-
moto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. J .
Org. Chem. 1982, 47, 119. (j) Lipshutz, B. H.; Parker, D. A.; Kozlowski,
J . A. Tetrahedron Lett. 1984, 25, 5959. (k) Lipshutz, B. H.; Sclafani,
J . A.; Takanami, T. J . Am. Chem. Soc. 1998, 120, 4021.
Reactivity can be a major problem in organocuprate
chemistry. Although numerous homo and mixed organo-
cuprates readily transfer alkyl ligands to the â-carbon
atom of R,â-enones, the conjugate addition reaction is
often sluggish with less reactive enoate substrates.
Cuprates prepared from CuCN (2RLi + CuCN),10 cuprous
(5) (a) Bertz, S. H.; Miao, G.; Eriksson, M. J . Chem. Soc., Chem.
Commun. 1996, 815. (b) Snyder, J . P.; Bertz, S. H. J . Org. Chem. 1995,
60, 4312. (c) Barnhart, T. M.; Huang, H.; Penner-Hahn, J . E. J . Org.
Chem. 1995, 60, 4310. (d) Lipshutz, B. H.; J ames, B. J . Org. Chem.
1994, 59, 7585. (e) Krause, N. Angew. Chem., Int. Ed. Engl. 1999, 38,
79; and references therein.
(6) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
(7) (a) Ba¨ckvall, J .-E.; Persson, E. S. M.; Bombrun, A. J . Org. Chem.
1994, 59, 4126. (b) Schlosser, M.; Bossert, H. Tetrahedron 1991, 47,
6287.
(8) (a) Dieter, R. K.; Velu, S. E. J . Org. Chem. 1997, 62, 3798. (b)
Dieter, R. K.; Lu, K. Tetrahedron Lett. 1999, 40, 4011. (c) Dieter, R.
K.; Lu, K.; Velu, S. E. J . Org. Chem. 2000, 65, 8715.
(4) Bertz, S. H.; Gibson, C. P.; Dabbagh, G. Tetrahedron Lett. 1987,
28, 4251.
(9) Dieter, R. K.; Sharma, R. R. Tetrahedron Lett. 1997, 38, 5937.
(10) Lipshutz, B. H. Tetrahedron Lett. 1983, 24, 127.
10.1021/jo0056702 CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/13/2001