Photoenzymatic Reduction of C=C Double Bonds
FULL PAPERS
Activity Assay
[8] M. Hall, C. Stꢀckler, H. Ehammer, E. Pointner, G.
Oberdorfer, K. Gruber, B. Hauer, R. Stꢀrmer, W.
Kroutil, P. Macheroux, K. Faber, Adv. Synth. Catal.
NADH-dependent YqjM activity was assessed spectropho-
tometrically at 340 nm (e=6.22 mM ) using cyclohexenone
À1
2
008, 350, 411–418.
1
1
00 mM) as substrate. A specific C=C-bond reduction of
.2 UmL was determined by subtracting substrate-inde-
[
9] M. A. Swiderska, J. D. Stewart, J. Mol. Catal. B:
À1
Enzym. 2006, 42, 52–54.
10] A. Mꢀller, B. Hauer, B. Rosche, J. Mol. Catal. B:
Enzym. 2006, 38, 126–130.
11] M. Wada, A. Yoshizumi, Y. Noda, M. Kataoka, S. Shi-
mizu, H. Takagi, S. Nakamori, Appl. Environm. Micro-
biol. 2003, 69, 933–937.
12] F. J. Chaparro-Riggers, T. A. Rogers, E. Vazquez-Fig-
ueroa, K. M. Polizzi, A. S. Bommarius, Adv. Synth.
Catal. 2007, 349, 1521–1531.
pendent aerobic NADH oxidation from the total activity.
Based on these numbers and literature values [M ACHNTUGRNENUG( YjqM)=
[
[
À1 [37]
37.4 kDa, Aspec =7.03 Umg ] , the concentration of YqjM
in the stock solution was estimated to be 4.57 mM).
Light-Driven Reduction Reactions
[
Unless stated otherwise photoenzymatic reduction reactions
were performed on a 10-mL scale using potassium phos-
phate (100 mM, pH 7) at ambient temperature supplement-
ed with 100 mMfinal FMN, 25 mM EDTA, and 10 mM keto-
[13] C. Stueckler, M. Hall, H. Ehammer, E. Pointner, W.
Kroutil, P. Macheroux, K. Faber, Org. Lett. 2007, 9,
5409–5411.
ACHTUNGTRENNUNGi sophorone. Prior to enzyme addition, the reaction mixture
was degassed by leading N gas through the reaction mixture
[14] A. Kurata, T. Kurihara, H. Kamachi, N. Esaki, Tetrahe-
dron: Asymmetry 2004, 15, 2837–2839.
2
for 15 min. Throughout the reaction, a gentle N stream was
2
passed over the reaction mixture. Afterwards, 0.914 mMfinal
YqjM was added and the reaction was started with insetting
illumination (250 W bulb, Philips 7748 XHP). At intervals,
samples were withdrawn, extracted with one aliquot of ethyl
acetate (containing 5 mM dodecane as internal standard),
[15] R. E. Williams, D. A. Rathbone, N. S. Scrutton, N. C.
Bruce, Appl. Environm. Microbiol. 2004, 70, 3566–
3
574.
[
16] Y. Meah, B. J. Brown, S. Chakraborty, V. Massey, Proc.
Natl. Acad. Sci. USA 2001, 98, 8560–8565.
dried over MgSO and analyzed by GC. Alterations to this
4
[17] Y. Meah, V. Massey, Proc. Natl. Acad. Sci. USA 2000,
7, 10733–10738.
protocol are indicated in the text. Semi-quantitative deter-
mination of hydrogen peroxide was performed using Quan-
tofix (Sigma–Aldrich).
9
[
[
[
[
[
18] B. Kosjek, F. J. Fleitz, P. G. Dormer, J. T. Kuethe, P. N.
Devine, Tetrahedron: Asymmetry 2008, 19, 1403–1406.
19] R. E. Williams, N. C. Bruce, Microbiology 2002, 148,
Synthesis of Deazaflavin
1
607–1614.
20] P. A. Karplus, K. M. Fox, V. Massey, FASEB J. 1995, 9,
1518–1526.
21] H. Zhao, W. A. van der Donk, Curr. Opin. Biotechnol.
5
-Deazariboflavin (deazaflavin) was synthesized according
[45]
to literature methods.
2
003, 14, 583–589.
22] F. Hollmann, K. Hofstetter, A. Schmid, Trends Biotech-
nol. 2006, 24, 163–171.
Acknowledgements
[23] F. Hollmann, A. Schmid, Biocatal. Biotransform. 2004,
2, 63–88.
2
We thank Adrie Straathof (TUDelft) for kind provision with
standard substances. M. M. G. thanks the Spanish Ministry
for Science and Education for a postdoctoral stipend.
[24] W. Liu, P. Wang, Biotechnol. Adv. 2007, 25, 369–384.
[25] W. A. van der Donk, H. Zhao, Curr. Opin. Biotechnol.
2003, 14, 421–426.
[
26] H. Chenault, G. Whitesides, Appl. Biochem. Biotech-
nol. 1987, 14, 147–197.
[
27] A. Mꢀller, R. Stꢀrmer, B. Hauer, B. Rosche, Angew.
Chem. 2007, 119, 3380–3382; Angew. Chem. Int. Ed.
References
2
007, 46, 3316–3318.
[
[
[
[
1] R. A. Sheldon, I. W. C. E. Arends, U. Hanefeld, Green
Chemistry and Catalysis, Wiley-VCH, Weinheim, 2007.
2] W. S. Knowles, Angew. Chem. 2002, 114, 2096–2107;
Angew. Chem. Int. Ed. 2002, 41, 1998–2007.
3] R. Noyori, Angew. Chem. 2002, 114, 2108–2123;
Angew. Chem. Int. Ed. 2002, 41, 2008–2022.
4] J. W. Yang, M. T. Hechavarria Fonseca, N. Vignola, B.
List, Angew. Chem. 2005, 117, 110–112; Angew. Chem.
Int. Ed. 2005, 44, 108–110.
[
[
[
[
[
[
28] F. Hollmann, B. Witholt, A. Schmid, J. Mol. Catal. B:
Enzym. 2002, 19–20, 167–176.
29] F. Hollmann, P. C. Lin, B. Witholt, A. Schmid, J. Am.
Chem. Soc. 2003, 125, 8209–8217.
30] S. Unversucht, F. Hollmann, A. Schmid, K.-H. van Pꢄe,
Adv. Synth. Catal. 2005, 347, 1163–1167.
31] G. de Gonzalo, G. Ottolina, G. Carrea, M. W. Fraaije,
Chem. Commun. 2005, 3724–3726.
32] F. Hollmann, K. Hofstetter, T. Habicher, B. Hauer, A.
Schmid, J. Am. Chem. Soc. 2005, 127, 6540–6541.
33] F. Hollmann, A. Taglieber, F. Schulz, M. T. Reetz,
Angew. Chem. 2007, 119, 2961–2964; Angew. Chem.
Int. Ed. 2007, 46, 2903–2906.
[
[
[
5] R. Stꢀrmer, B. Hauer, M. Hall, K. Faber, Curr. Opin.
Chem. Biol. 2007, 11, 203–213.
6] O. Warburg, W. Christian, Biochem. Z. 1933, 263, 228–
2
29.
7] M. Hall, C. Stꢀckler, B. Hauer, R. Stꢀrmer, T. Frie-
drich, M. Breuer, W. Kroutil, K. Faber, Eur. J. Org.
Chem. 2008, 2008, 1511–1516.
[34] A. Taglieber, F. Schulz, F. Hollmann, M. Rusek, M. T.
Reetz, ChemBioChem 2008, 9, 565–572.
Adv. Synth. Catal. 2009, 351, 3279 – 3286
ꢂ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3285