824
G. Baccolini, C. Boga
LETTER
Mezzina, E.; Todesco, P.E. J. Chem.Soc.,Perkin Trans.1,
1988, 3281.
(6) Baccolini,G.; Beghelli, M.; Boga, C. Heteroatom Chem.
1997, 551.
3c as viscous oil,1H NMR (300MHz, CDCl3): δ(ppm) 7. 46
(dd, 1H, J = 14.4, J = 3.2 Hz), 7.05(dd, 1H, J = 9.1, J = 3.2
Hz), 7.01-6.8 (m, 4H), 6.72 (dd, 1H, J = 9.1 Hz, J = 6.8 Hz),
3.88 (s, 3H), 3.75 (s, 3H), 3.67 (s, 3H), 1.89 (d, 3H, J = 15.4
Hz); 31P NMR(121.47 MHz, CDCl3): δ(ppm) 40.9 (broad
quintet, J = 15.4 Hz); HRMS: Found, 322.0967, Calc. for
C16H19O5P, 322.0970.
(7) General procedure for preparation of 2a-e, 3b,c and 4b,c
A solution of 0.1 mol of anisole 1, 0.1 mol (8.7 mL) of
phosphorus trichloride, and 0.06 mol of aluminum trichloride
(sublimated prior to use) was refluxed (70-80 °C) and stirred
under dry nitrogen for specified lenght of time (see Table 1).
At the end, the reaction mixture appeared as a viscous oil,
which was treated with a mixture of ice and dichloromethane;
the organic layer was washed with a 5% aq. NaOH solution
and two times with water. After removal of the solvent,
compounds 2 were separated by distillation under reduced
pressure or by flash chromatography in 50-70% yield.
In similar manner compounds 3b,c, and 4b,c were obtained
using a 1b,c : AlCl3: PCl3 ratio of 1:0.3:1.
4b as greasy solid, 1H NMR(300MHz, CDCl3): δ(ppm) 7.44
(dd, 2H, J = 14.0 Hz, J = 3.7 Hz), 7.27 (m, 2H), 6.81 (dd, 2H,
J = 8.4 Hz, J = 5.5 Hz), 3.70 (s, 6H), 2.28 (s, 6H), 2.10 (d, 3H,
J = 14.6 Hz); 31P NMR(121.47 MHz, CDCl3): δ(ppm) 30.48
(m); HRMS: Found, 304.1222, Calc. for C17H21O3P,
304.1228.
4c as greasy solid, 1H NMR(300MHz, CDCl3): δ(ppm) 7.23
(dd, 2H, J = 14.8 Hz, J = 2.8 Hz), 7.03 (dd, 2H, J = 8.9Hz,
J = 2.8Hz), 6.81 (dd, 2H, J = 8.9 Hz, J = 7.4 Hz), 3.76 (s, 6H),
3.70 (s, 6H), 2.15 (d, 3H, J = 14.6 Hz); 31P NMR(121.47
MHz, CDCl3): δ(ppm) 30.30 (m); HRMS: Found, 336.1122,
Calc. for C17H21O5P, 336.1127.
Selected spectral data for new compounds 2e, 3b,c and 4b,c
All gave satisfactory elemental analyses. Yields are not
optimized. The 31P signals are given in ppm downfield from
85% H3PO4.
(8) Honig, M.L.; Weil, E.D. J.Org.Chem., 1977, 42, 379.
(9) Symmes, C., Jr.; Quin, L.D. J.Org.Chem., 1978, 43, 1250.
(10) Brass, H. J.; Bender, M. L., J Am. Chem. Soc., 1973, 95, 5391.
(11) Roy, N.K.; Nidiry, E.S.; Vasu, K.; Bedi, S.; Lalljee, B.; Singh,
B. J.Agric.Food Chem., 1996, 44, 3971.
2e as viscous oil, 1H NMR(300MHz, CDCl3): δ(ppm) 7.44(dd,
4H, J = 9.1, J = 0.7 Hz), 7.07(dd, 4H, J = 9.1, J = 1.4 Hz),
1.81 (d, 3H, J = 17.7 Hz); 31P NMR(121.47 MHz, CDCl3):
δ(ppm) 25.3 (bq, J = 17.7 Hz), HRMS: Found, 403.8810,
Calc. for C13H11Br2O3P, 403.8812.
(12) Coover Jr. H.W.; McConnell, L.R.; McCall, M.A.
Ind.Eng.Chem. 1960, 52, 409.
3b as viscous oil, 1H NMR(300MHz, CDCl3): δ(ppm) 7. 75
(dd, 1H, J = 13.7, J = 2.4 Hz), 7.29(dd, 1H, J = 8.2, J = 2.4
Hz), 7.15 (bs, 4H), 6.81 (dd, 1H, J = 8.2 Hz, J = 7.2 Hz), 3.90
(s, 3H), 2.27 (s, 3H), 2.24 (s, 3H), 1.88 (d, 3H, J = 15.4 Hz);
31P NMR(121.47 MHz, CDCl3): δ(ppm) 40.8 (quintet of
doublets, J = 15.4 Hz, J = 7.2 Hz); HRMS: Found, 290.1071,
Calc. for C16H19O3P, 290.1072.
(13) Hoskin, F.C. Can. J. Chem., 1957, 35, 581.
(a) Michaelis, A.; Kaehne, R. Ber., 1898, 31, 1048. (b)
Behrman, E.J.; Biallas, M.J.; Brass, H.J.; O'Edwards, J.; Isaks,
M. J.Org.Chem. 1970, 35, 3063.
Article Identifier:
1437-2096,E;1999,0,06,0822,0824,ftx,en;G06999ST.pdf
Synlett 1999, No. 6, 822–824 ISSN 0936-5214 © Thieme Stuttgart · New York