NaTuRe CHemISTRy
Articles
5
6
7
8
9
1
1
.
.
.
.
.
Morrison, K. C. & Hergenrother, P. J. Natural products as starting points
36. Palchaudhuri, R. et al. A small molecule that induces intrinsic pathway
for the synthesis of complex and diverse compounds. Nat. Prod. Rep. 31,
apoptosis with unparalleled speed. Cell Rep. 13, 2027–2036 (2015).
37. Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H.-J. Regulated cell
death and inꢀammation: an auto-ampliꢂcation loop causes organ failure. Nat.
Rev. Immunol. 14, 759–767 (2014).
38. Galluzzi, L., Senovilla, L., Zitvogel, L. & Kroemer, G. ꢃe secret ally:
immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11,
215–233 (2012).
6–14 (2014).
Huigens, R. W. III et al. A ring-distortion strategy to construct
stereochemically complex and structurally diverse compounds from natural
products. Nat. Chem. 5, 195–202 (2013).
Ciardiello, J. J. et al. A novel complexity-to-diversity strategy for the
diversity-oriented synthesis of structurally diverse and complex macrocycles
from quinine. Bioorg. Med. Chem. 25, 2825–2843 (2017).
Raꢁerty, R. J., Hicklin, R. W., Maloof, K. A. & Hergenrother, P. J. Synthesis of
complex and diverse compounds through ring distortion of abietic acid.
Angew. Chem. Int. Ed. 53, 220–224 (2014).
39. Lee, H. Y. et al. Reactive oxygen species synergize to potently and selectively
induce cancer cell death. ACS Chem. Biol. 12, 1416–1424 (2017).
40. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking
metabolism, redox biology and disease. Cell 171, 273–285 (2017).
41. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell
death. Cell 149, 1060–1072 (2012).
Garcia, A., Drown, B. S. & Hergenrother, P. J. Access to a structurally
complex compound collection via ring distortion of the alkaloid sinomenine.
Org. Lett. 18, 4852–4855 (2016).
42. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell
156, 317–331 (2014).
0. Tasker, S. Z., Cowfer, A. E. & Hergenrother, P. J. Preparation of structurally
diverse compounds from the natural product lycorine. Org. Lett. 20,
43. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic
regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).
5894–5898 (2018).
1. Paciaroni, N. G. et al. A tryptoline ring‐distortion strategy leads to complex
and diverse biologically active molecules from the indole alkaloid yohimbine.
Chem. Eur. J. 23, 4327–4335 (2017).
44. Gaschler, M. M. et al. FINO
initiates ferroptosis through GPX4 inactivation
2
and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018).
45. Lewerenz, J. et al. Oxytosis/ferroptosis—(re-)emerging roles for oxidative
stress-dependent non-apoptotic cell death in diseases of the central nervous
system. Front. Neurosci. 12, 214 (2018).
1
1
1
2. Govindaraju, K. et al. Novel topologically complex scaꢁold derived from
alkaloid haemanthamine. Molecules 23, 255–263 (2018).
3. Charaschanya, M. & Aubé, J. Reagent-controlled regiodivergent ring
expansions of steroids. Nat. Commun. 9, 934–942 (2018).
46. Murphy, T. H. et al. Calcium-dependent glutamate cytotoxicity in a neuronal
cell line. Brain Res. 444, 325–332 (1988).
4
4
4
7. Miyamoto, M., Murphy, T. H., Schnaar, R. L. & Coyle, J. T. Antioxidants
protect against glutamate-induced cytotoxicity in a neuronal cell line. J.
Pharmacol. Exp. ꢀer. 250, 1132–1140 (1989).
4. Laurent, E. et al. A ring‐distortion strategy from marine natural product
ilimaquinone leads to quorum sensing modulators. Eur. J. Org. Chem. 2018,
2486–2497 (2018).
8. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress
into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell
Metabol. 8, 237–248 (2008).
1
5. Xu, H. et al. Identiꢂcation of a diverse synthetic abietane diterpenoid library
for anticancer activity. Bioorg. Med. Chem. Lett. 27, 505–510 (2017).
6. Luca, L. et al. Discovery of novel cinchona‐alkaloid‐inspired
oxazatwistane autophagy inhibitors. Angew. Chem. Int. Ed. 56,
1
9. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identiꢂes compounds
activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-
harboring cancer cells. Chem. Biol. 15, 234–245 (2008).
2145–2150 (2017).
1
1
7. Richter, M. F. et al. Predictive compound accumulation rules yield a
broad-spectrum antibiotic. Nature 545, 299–304 (2017).
8. Poulsen, S. M., Karlsson, M., Johansson, L. B. & Vester, B. ꢃe pleuromutilin
drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase
centre on the ribosome. Mol. Microbiol. 41, 1091–1099 (2001).
9. Ma, X. et al. Directed C–H bond oxidation of (+)-pleuromutilin.
J. Org. Chem. 83, 6843–6892 (2018).
5
5
5
0. Subramanian, A. et al. A next generation connectivity map: L1000 platform
and the ꢂrst 1,000,000 proꢂles. Cell 171, 1437–1452 (2017).
1. Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange
induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).
2. Banerjee, R., Pace, N. J., Brown, D. R. & Weerapana, E. 1,3,5-Triazine as a
modular scaꢁold for covalent inhibitors with streamlined target identiꢂcation.
J. Am. Chem. Soc. 135, 2497–2500 (2013).
1
2
2
0. Farney, E. P., Feng, S. S., Schäfers, F. & Reisman, S. E. Total synthesis of
5
5
5
5
5
3. Holmgren, A. ꢃioredoxin structure and mechanism: conformational
changes on oxidation of the active-site sulꢅydryls to a disulꢂde. Structure 3,
(
+)-pleuromutilin. J. Am. Chem. Soc. 140, 1267–1270 (2018).
1. Murphy, S. K., Zeng, M. & Herzon, S. B. A modular and enantioselective
synthesis of the pleuromutilin antibiotics. Science 356, 956–959 (2017).
2. ꢃirring, K. et al. 12-epi-pleuromutilins. US patent WO2015110481A1 (2015).
3. Gibbons, E. G. Total synthesis of (±)-pleuromutilin. J. Am. Chem. Soc. 104,
2
39–243 (1995).
4. Nordberg, J. & Arnér, E. S. J. Reactive oxygen species, antioxidants
and the mammalian thioredoxin system. Free Radic. Biol. Med. 31,
2
2
1
287–1312 (2001).
1767–1769 (1982).
5. Mukherjee, A. et al. A cellular and molecular investigation of the action of
PMX464, a putative thioredoxin inhibitor, in normal and colorectal cancer
cell lines. Br. J. Pharmacol. 151, 1167–1175 (2007).
2
4. Paquette, L. A., Wiedeman, P. E. & Bulman-Page, P. C. (+)-Pleuromutilin
synthetic studies. Degradative and de novo acquisition of a levorotatory
tricyclic lactone subunit. J. Org. Chem. 53, 1441–1450 (1988).
6. Baker, A. F. et al. ꢃe antitumor thioredoxin-1 inhibitor PX-12
2
5. Liu, J., Lotesta, S. D. & Sorensen, E. J. A concise synthesis of the molecular
framework of pleuromutilin. Chem. Commun. 47, 1500–1502 (2011).
6. Birch, A. J., Holzapfel, C. W. & Rickards, R. W. ꢃe structure and
some aspects of the biosynthesis of pleuromutilin. Tetrahedron 22,
(
1-methylpropyl 2-imidazolyl disulꢂde) decreases thioredoxin-1 and VEGF
levels in cancer patient plasma. J. Lab. Clin. Med. 147, 83–90 (2006).
7. Kirkpatrick, D. L. et al. Mechanisms of inhibition of the thioredoxin growth
factor system by antitumor 2-imidazolyl disulꢂdes. Biochem. Pharmacol. 55,
2
359–387 (1966).
9
87–994 (1998).
2
2
2
7. Arigoni, D. Some studies in the biosynthesis of terpenes and related
compounds. Pure Appl. Chem. 17, 331–348 (1968).
5
5
8. Sexton, D. W. Targeting airway inꢀammation: PMX464 and the epithelial
bulls eye. Br. J. Pharmacol. 155, 620–622 (2008).
8. Drews, J. et al. Antimicrobial activities of 81.723hfu, a new pleuromutilin
derivative. Antimicrob. Agents Chemother. 7, 507–516 (1975).
9. Reynoso, E. et al. ꢃioredoxin-1 actively maintains the pseudokinase MLKL
in a reduced state to suppress disulꢂde bond-dependent MLKL polymer
formation and necroptosis. J. Biol. Chem. 292, 17514–17524 (2017).
0. You, B. R., Shin, H. R. & Park, W. H. PX-12 inhibits the growth of A549 lung
cancer cells via G2/M phase arrest and ROS-dependent apoptosis. Int. J.
Oncol. 44, 301–308 (2014).
9. Yang, L. P. & Keam, S. J. Retapamulin: a review of its use in the management
of impetigo and other uncomplicated superꢂcial skin infections. Drugs 68,
6
855–873 (2008).
3
0. Berner, H., Schulz, G. & Schneider, H. Synthese ab-trans-anellierter derivate
des tricyclischen diterpens pleuromutilin durch intramolekulare 1,5-hydrid-
verschiebung. Tetrahedron 36, 1807–1811 (1980).
6
6
1. Li, Y., Qian, L. & Yuan, J. Small molecule probes for cellular death machines.
Curr. Opin. Chem. Biol. 39, 74–82 (2017).
2. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of
the nomenclature committee on cell death 2018. Cell Death Diꢁer. 25,
3
3
1. Andemichael, Y. et al. Process development for a novel pleuromutilin-derived
antibiotic. Org. Process Res. Dev. 13, 729–738 (2009).
2. Uccello, D. P. et al. ꢃe synthesis of C-13 functionalized pleuromutilins via
C–H amidation and subsequent novel rearrangement product. Tetrahedron
Lett. 52, 4247–4251 (2011).
4
86–541 (2018).
6
6
3. Mai, T. T. et al. Salinomycin kills cancer stem cells by sequestering iron in
lysosomes. Nat. Chem. 9, 1025–1033 (2017).
4. Bruni, A. et al. Ferroptosis-inducing agents compromise in vitro human islet
viability and function. Cell Death Dis. 9, 595–605 (2018).
3
3
3
3. Hicklin, R. W., López Silva, T. L. & Hergenrother, P. J. Synthesis of
bridged oxafenestranes from pleuromutilin. Angew. Chem. Int. Ed. 53,
9880–9883 (2014).
4. Botham, R. C. et al. Dual small-molecule targeting of procaspase-3
dramatically enhances zymogen activation and anticancer activity.
J. Am. Chem. Soc. 136, 1312–1319 (2014).
Acknowledgements
The authors acknowledge support from the University of Illinois and Cancer
Scholars for Translational and Applied Research (C*STAR) programme and thank the
NIH (R01GM118575) for support of some of the synthetic studies. The authors thank
W. Woods and P. Perez Pinera for assistance with CRISPR–Cas9 studies, D. Gray
5. Parkinson, E. I., Bair, J. S., Cismesia, M. & Hergenrother, P. J. Eꢄcient NQO1
substrates are potent and selective anticancer agents. ACS Chem. Biol. 8,
2173–2183 (2013).