Communication
ChemComm
Notes and references
1
2
P. Dayhaw, Optom. Vis. Sci., 1995, 72, 417–424.
(a) B. Chua and E. Shrago, J. Nutr., 1978, 108, 196–202; (b) J. St ˘e p ´a n,
T. Havr ´a nek, J. Form ´a nkov ´a , J. Skrha, F. Skrha and V. Pacovsk ´y , Clin.
Chim. Acta, 1980, 105, 75–81.
3
4
(a) J. E. Coleman, Annu. Rev. Biophys. Biomol. Struct., 1992, 21,
4
41–483; (b) J. L. Millan, Purinergic Signalling, 2006, 2, 335–341.
(a) P. H. Lange, J. L. Millan, T. Stigbrand, R. L. Vessella, E. Ruoslahti
and W. H. Fishman, Cancer Res., 1982, 42, 3244–3247; (b) J. B.
Warshaw, J. W. Littlefield, W. H. Fishman, N. R. Inglis and
L. L. Stolbach, J. Clin. Invest., 1971, 50, 2137–2142; (c) J. Stebbing,
L. C. Lit, H. Zhang, R. S. Darrington, O. Melaiu, B. Rudraraju and
G. Giamas, Oncogene, 2014, 33, 939–953.
5
(a) H. G. Wada, J. E. Shindelman, A. E. Ortmeyer and H. H. Sussman,
Int. J. Cancer, 1979, 23, 781–787; (b) J. D. Schmidt, N. H. Slack,
T. M. Chu and G. P. Murphy, J. Urol., 1982, 127, 457–459;
(
c) P. A. Kyd, K. D. Vooght, F. Kerkhoff, E. Thomas and A. Fairney,
Ann. Clin. Biochem., 1998, 35, 717–725; (d) U. Domar, A. Danielsson,
K. Hirano and T. Stigbrand, Scand. J. Gastroenterol., 1988, 23,
7
93–800; (e) D. B. Maxwell, E. A. Fisher, H. A. Ross-Clunis and
H. L. Estep, J. Am. Coll. Nutr., 1986, 5, 55–59.
Fig. 4 (A) Fluorescence images of mice from the normal group, diabetes
group, and treatment group after injection of QX-P (200 mM) with time
6
7
(a) T. Hasegawa, M. Sugita, K. Takatani, H. Matsuura, T. Umemura
and H. Haraguchi, Bull. Chem. Soc. Jpn., 2006, 79, 1211–1214;
(
0, 10, 20, 40, 60 min). (B) Relative fluorescence intensity in (A). The
fluorescence intensity of the normal group at 60 min is defined as 1.0.
C) Fluorescence images of major organs. 1: liver, 2: heart, 3: spleen, 4:
lungs, 5: kidneys. (D) Fluorescence images of blood from the mice.
ex = 640 nm, lem = 680–780 nm.
(
3
b) C. Ruan, W. Wang and B. Gu, Anal. Chem., 2006, 78,
379–3384; (c) C. M. Li, S. J. Zhen, J. Wang, Y. F. Li and
(
C. Z. Huang, Biosens. Bioelectron., 2013, 43, 366–371; (d) K. Ino,
Y. Kanno, T. Arai, K. Y. Inoue, Y. Takahashi, H. Shiku and T. Matsue,
Anal. Chem., 2012, 84, 7593–7598.
(a) H. W. Liu, L. L. Chen, C. Y. Xu, Z. Li, H. Y. Zhang, X. B. Zhang and
W. H. Tan, Chem. Soc. Rev., 2018, 47, 7140–7180; (b) J. N. Liu, W. B. Bu
and J. L. Shi, Chem. Rev., 2017, 117, 6160–6224; (c) H. Singh, K. Tiwari,
R. Tiwari, S. K. Pramanik and A. Das, Chem. Rev., 2019, 119,
l
An obvious fluorescence signal is seen in the diabetes group
compared to the normal group, and a significantly weakened
fluorescent signal is observed in the treatment group, which is
consistent with the above experimental phenomenon. This
result indicates that QX-P can be used to monitor the activity
of ALP in the diagnosis and treatment of the diabetic mice.
In conclusion, we have, for the first time, reported a water-
soluble NIR fluorescent probe (QX-P) based on quinolinium–
xanthene dye for detecting ALP activity. Compared with classic
hemicyanine dye, the fluorophore QX not only has longer absorp-
tion and emission wavelengths, but also has simple synthesis
steps and cheap raw materials. QX-P displays excellent sensitivity
and selectivity to ALP. Owing to the low cytotoxicity, the probe
QX-P can visualize the activity of ALP in different cell lines with
outstanding performance. Furthermore, QX-P is used to prove
that the ALP level of the diabetic mice is higher than that
1
1718–11760; (d) X. F. Wu, W. Shi, X. H. Li and H. M. Ma, Acc. Chem.
Res., 2019, 52, 1892–1904; (e) Y. H. Tang, Y. Y. Ma, J. L. Yin and
W. Y. Lin, Chem. Soc. Rev., 2019, 48, 4036–4048.
8 (a) J. Liang, R. T. K. Kwok, H. Shi, B. Z. Tang and B. Liu, ACS Appl.
Mater. Interfaces, 2013, 5, 8784–8789; (b) X. F. Hou, Q. X. Yu, F. Zeng,
J. H. Ye and S. Z. Wu, J. Mater. Chem. B, 2015, 3, 1042–1048;
(
c) L. Dong, Q. Miao, Z. Hai, Y. Yuan and G. Liang, Anal. Chem.,
2015, 87, 6475–6478; (d) T. Kim, H. J. Kim, Y. Choi and Y. Kim,
Chem. Commun., 2011, 47, 9825–9827; (e) H. M. Zhang, C. L. Xu,
J. Liu, X. H. Li, L. Guo and X. M. Li, Chem. Commun., 2015, 51,
7031–7034; ( f ) F. Ma, M. Liu and C. Y. Zhang, Chem. Commun.,
2019, 55, 8963–8966.
(a) J. Huang, Y. L. Wu, F. Zeng and S. Z. Wu, Theranostics, 2019,
9
9
, 7313; (b) W. Fu, C. X. Yan, Z. Q. Guo, J. J. Zhang, H. Y. Zhang,
H. Tian and W. H. Zhu, J. Am. Chem. Soc., 2019, 141, 3171–3177;
(c) M. Gao, R. Wang, F. B. Yu and L. X. Chen, Biomaterials, 2018, 160,
1
–14; (d) S. Y. Gong, E. B. Zhou, J. X. Hong and G. Q. Feng, Anal.
Chem., 2019, 91, 13136–13142; (e) Z. Q. Guo, S. Park, J. Yoon and
I. Shin, Chem. Soc. Rev., 2014, 43, 16–29.
of normal mice. After treatment with a hypoglycemic drug 10 (a) Y. Tan, L. Zhang, K. H. Man, R. Peltier, G. C. Chen, H. T. Zhang,
L. Y. Zhou, F. Wang, D. Ho, S. Q. Yao, Y. Hu and H. Y. Sun, ACS Appl.
(
metformin), the production of ALP in the diabetic mice is
Mater. Interfaces, 2017, 9, 6796–6803; (b) C. S. Park, T. H. Ha,
M. Kim, N. Raja, H. S. Yun, M. J. Sung, O. S. Kwon, H. Yoon and
C. S. Lee, Biosens. Bioelectron., 2018, 105, 151–158; (c) Y. Y. Li,
H. Song, C. H. Xue, Z. J. Fang, L. Q. Xiong and H. X. Xie, Chem.
Sci., 2020, 11, 5889–5894; (d) H. W. Liu, X. X. Hu, L. M. Zhu, K. Li,
Q. M. Rong, L. Yuan, X. B. Zhang and W. H. Tan, Talanta, 2017, 175,
421–426; (e) L. B. Xu, X. He, Y. B. Huang, P. Y. Ma, Y. X. Jiang, X. Liu,
S. Tao, Y. Sun, D. Q. Song and X. H. Wang, J. Mater. Chem. B, 2019, 7,
significantly reduced. These results indicate that QX-P could
serve as a powerful tool for further studying the clinical value
of ALP in the diagnosis and treatment of diabetes.
This work was supported by the National Natural Science
Foundation of China (21775133), Hunan Provincial Natural
Science Foundation (2018JJ2385), Scientific Research Fund of
Hunan Provincial Education Department (19A479), Degree &
Postgraduate Education Reform Project of Hunan Province
1284–1291; ( f ) X. T. Gao, G. C. Ma, C. Jiang, L. L. Zeng, S. S. Jiang,
P. Huang and J. Lin., Anal. Chem., 2019, 91, 7112–7117; (g) S. J. Li,
C. Y. Li, Y. F. Li, J. J. Fei, P. Wu, B. Yang, J. Ou-Yang and S. X. Nie,
Anal. Chem., 2017, 89, 6854–6860.
(2019JGYB113) and Degree & Postgraduate Education Reform
1
1 (a) D. Di Lorenzo, A. Albertini and D. Zava, Cancer Res., 1991, 51,
Project of Hunan Province (CX20190483, XDCX2020B115).
4470–4475; (b) F. Herz, Experientia, 1985, 41, 1357–1361;
(
c) H. Matsumoto, R. H. Erickson, J. R. Gum, M. Yoshioka,
E. Gum and Y. S. Kim, Gastroenterology, 1990, 98, 1199–1207.
2 V. Burkart, Z. Q. Wang, J. Radons, B. Heller, Z. Herceg, L. Stingl,
E. F. Wagner and H. Kolb, Nat. Med., 1999, 5, 314–319.
3 D. Stepensky, M. Friedman and I. Raz, Drug Metab. Dispos., 2002, 30,
861–868.
1
1
Conflicts of interest
There are no conflicts to declare.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020