Journal of Materials Chemistry B
Paper
2
+
the polymers can decrease the free Ca concentration and thus
reduce the rate of ionic growth because of the complex forma-
tion. A high b-CD-b-PLGA concentration leads to a slow nucle-
ation and growth speed, which is favorable for the
reorganization of the building units. It can be inferred that the
slow nucleation, slow growth and well-organized aggregation
are important factors for the formation of pseudo-dodecahedral
crystals in a high polymer concentration.
Oxford,
2001;
A.
Dey,
G.
de
With
and
N. A. J. M. Sommerdijk, Chem. Soc. Rev., 2010, 39, 397;
S. Albeck, J. Aizenberg, L. Addadi and S. Weiner, J. Am.
Chem. Soc., 1993, 115, 11691.
2 A. W. Xu, Y. Ma and H. C ¨o lfen, J. Mater. Chem., 2007, 17, 415.
3 T. Wang, R. Che, W. Li, R. Mi and Z. Shao, Cryst. Growth Des.,
2011, 11, 2164; W. Li, S. Sun, Q. Yu and P. Wu, Cryst. Growth
Des., 2010, 10, 2685; C. E. Killian, R. A. Metzler, Y. Gong,
T. H. Churchill, I. C. Olson, V. Trubetskoy,
M. B. Christensen, J. H. Fournelle, F. De Carlo, S. Cohen,
J. Mahamid, A. Scholl, A. Young, A. Doran, F. H. Wilt,
S. N. Coppersmith and P. U. P. A. Gilbert, Adv. Funct.
Mater., 2011, 21, 682; F. C. Meldrum and H. C ¨o lfen, Chem.
Rev., 2008, 108, 4332.
Compared with glycoproteins, the b-CD-b-PLGA has a denite
chemical structure and mediates a glycoprotein-like mineraliza-
tion behavior of CaCO . Therefore, the present work provides a
3
simple method to explore the fundamental mechanism of glyco-
protein controlled mineralization. The crystallization pathway via
the transient ACC and meso-scale assembly was also found in a
ovalbumin-controlled CaCO
of glycoprotein found in egg white), implying that similar pattern
may widely exist in glycoprotein-mediated biomineralization.
From the experiments, we learned that both the b-CD and PLGA
segments play important roles in the morphosynthesis of CaCO3.
The results agree with the ndings that both polysaccharide and
peptide moieties are involved in controlling aspects of crystal
3
mineralization (ovalbumin is a kind
4 S. Weiner and L. Addadi, J. Mater. Chem., 1997, 7, 689;
K. Benzerara, N. Menguy, P. L ´o pez-Garc ´ı a, T.-H. Yoon,
J. Kazmierczak, T. Tyliszczak, F. Guyot and G. E. Brown,
Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 9440; C. S ¨o llner,
M. Burghammer, E. Busch-Nentwich, J. Berger, H. Schwarz,
C. Riekel and T. Nicolson, Science, 2003, 302, 282; D. Ren,
Q. Feng and X. Bourrat, Micron, 2011, 42, 228.
5 G. Falini, S. Albeck, S. Weiner and L. Addadi, Science, 1996,
271, 67; G. He, T. Dahl, A. Veis and A. George, Nat. Mater.,
2003, 2, 552; L. Addadi, D. Joester, F. Nudelman and
32
8–10
growth.
specic crystal faces, while the b-CD can adjust the interactions
among the primary CaCO subunits. Such a strategy may widely
The function of the acidic polypeptide is to bind
3
ˇ
exist in glycoprotein-controlled mineralization, in which one part
S. Weiner, Chem.–Eur. J., 2006, 12, 980; A. A. LinS-Krogis,
of the polymer selectively adsorbs on specic crystal faces and
other part regulates the crystal orientation.
Acta Zool., 1958, 39, 19; J. L. Arias and M. S. Fernandez,
Chem. Rev., 2008, 108, 4475; K. Henriksen, S. L. S. Stipp,
J. R. Young and M. E. Marsh, Am. Mineral., 2004, 89, 1709.
9
6
G. Wang, L. Li, J. Lan, L. Chen and J. You, J. Mater. Chem.,
008, 18, 2789.
4
Conclusions
2
In summary, a novel glycoprotein-like copolymer b-CD-b-PLGA
7 A. Natoli, M. Wiens, H.-C. Schr ¨o der, M. Stifanic, R. Batel,
A. L. Soldati, D. E. Jacob and W. E. G. M u¨ ller, Micron, 2010,
41, 359.
8 H. Tohse, K. Saruwatari, T. Kogure, H. Nagasawa and
Y. Takagi, Cryst. Growth Des., 2009, 9, 4897.
was prepared and applied for the calcium carbonate minerali-
2
+
zation. By adjusting the Ca and b-CD-b-PLGA concentrations,
structures including rosettes, rods, and pseudo-dodecahedrons
can be controllably prepared. Both the b-CD and PLGA
segments are essential for the mineralization behavior. The
9 S. Albeck, S. Weiner and L. Addadi, Chem.–Eur. J., 1996, 2, 278.
formation process is identied to be relevant to a non-classical 10 C. R. MacKenzie, S. M. Wilbanks and K. M. McGrath,
process by directed aggregation of initially stabilized nano- J. Mater. Chem., 2004, 14, 1238.
particles. In the process, ACC was formed initially and crystal- 11 M. F. Butler, N. Glaser, A. C. Weaver, M. Kirkland and
lized to subunits subsequently. The nal crystals morphology is
determined by the meso-scale assembly of the polymer coated
subunits. The study offers a simple way to mimic glycoprotein-
M. Heppenstall-Butler, Cryst. Growth Des., 2006, 6, 781;
B. Leng, F. Jiang, K. Lu, W. Ming and Z. Shao,
CrystEngComm, 2010, 12, 730.
controlled mineralization and helps to explore the fundamental 12 N. Hadjichristidis, H. Iatrou, M. Pitsikalis and J. Mays, Prog.
mechanism in biomineralization.
Polym. Sci., 2006, 31, 1068; L. A. Gower and D. A. Tirrell,
J. Cryst. Growth, 1998, 191, 153; P. Kasparov, M. Antonietti
and H. C ¨o fen, Colloids Surf., A, 2004, 250, 153; X. H. Guo,
S. H. Yu and G. B. Cai, Angew. Chem., Int. Ed., 2006, 45,
3977; X. H. Guo, A. W. Xu and S. H. Yu, Cryst. Growth Des.,
2008, 8, 1233.
Acknowledgements
This work was supported by National Natural Science Founda-
tion of China (50925308, 21234002), Key Grant Project of
Ministry of Education (313020) and National Basic Research 13 X. Guo, L. Liu, W. Wang, J. Zhang, Y. Wang and S. H. Yu,
Program of China (no. 2012CB933600). Support from project of
Shanghai municipality (10GG15) is also appreciated.
CrystEngComm, 2011, 13, 2054.
14 W. Zhu, J. Lin and C. Cai, J. Mater. Chem., 2012, 22, 3939.
15 W. Zhu, C. Cai, J. Lin, L. Wang, L. Chen and Z. Zhuang,
Chem. Commun., 2012, 48, 8544.
Notes and references
1
6 E. R. Blout and R. H. Karlson, J. Am. Chem. Soc., 1956, 78,
941; C. Cai, L. Zhang, J. Lin and L. Wang, J. Phys. Chem. B,
2008, 112, 12666.
1
S. Mann, Biomineralization: Principles and Concepts in
Bioinorganic Materials Chemistry, Oxford University Press,
8
48 | J. Mater. Chem. B, 2013, 1, 841–849
This journal is ª The Royal Society of Chemistry 2013