10.1002/anie.202015379
Angewandte Chemie International Edition
RESEARCH ARTICLE
Figure 5. In vivo therapeutic efficacy of LET-6. (a) Thermal images of mice intravenously injected with LET-6 and LET-6’ (808 nm, 0.5 W/cm2, 10 min). (b) The
corresponding temperature at different time points of (a). (c) Relative tumor growth curves (mean ± SD, n = 5, **P < 0.01), (d) body weights, (e) tumor weights
(mean ± SD, n = 5, ***P < 0.001), and (f) photographs of ex vivo tumors after different treatments. (g) H&E stained images of tumor sections (scale bar = 100 μm).
[4]
C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang,
H. Yao, Z. Wang, J. Shi, Angew. Chem. Int. Ed. Engl. 2016,
55, 2101-2106.
Conclusion
In summary, we develop a NIR light-triggered unsaturated
ligand occupancy of Fe2+ delivery system for FL/PA dual-modality
imaging guided photothermal enhanced CDT. The FL/PA signals
of LET-6 can be used as indicators for in vivo monitoring. Upon
laser irradiation, the disassembly and decomposition of LET-6
promoted the exposure of Fe2+, thus enabling the catalytic
breakdown of endogenous H2O2 in tumor microenvironment and
the formation of •OH for enhanced CDT. Both in vitro and in vivo
experiments confirmed the remarkable therapeutic effects of LET-
6 on U87MG cells and U87MG tumor-bearing mice. Only once
treatment can achieve 100% tumor elimination. The LET-6 has
simple component, good biocompatibility, NIR light-triggered
transformation, FL/PA dual-modality imaging ability, and efficient
photothermal-CDT synergistic therapy. Our findings provided a
controllable metal ions delivery strategy for future metal-ions-
mediated cancer synergistic therapy.
[5]
[6]
[7]
Z. Wang, Y. Ju, Z. Ali, H. Yin, F. Sheng, J. Lin, B. Wang, Y.
Hou, Nat. Commun. 2019, 10, 4418-4430.
H. Bi, Y. Dai, P. Yang, J. Xu, D. Yang, S. Gai, F. He, B. Liu,
C. Zhong, G. An, J. Lin, Small 2018, 14, e1703809.
a) M. Huo, L. Wang, Y. Chen, J. Shi, Nat. Commun. 2017,
8, 357-369; b) Z. Zhao, W. Wang, C. Li, Y. Zhang, T. Yu, R.
Wu, J. Zhao, Z. Liu, J. Liu, H. Yu, Adv. Funct. Mater. 2019,
29, 1905013.
D. W. Zheng, Q. Lei, J. Y. Zhu, J. X. Fan, C. X. Li, C. Li, Z.
Xu, S. X. Cheng, X. Z. Zhang, Nano Lett. 2017, 17, 284-
291.
a) F. Peng, M. I. Setyawati, J. K. Tee, X. Ding, J. Wang, M.
E. Nga, H. K. Ho, D. T. Leong, Nat. Nanotechnol. 2019, 14,
279-286; b) S. Sharifi, S. Behzadi, S. Laurent, M. L. Forrest,
P. Stroeve, M. Mahmoudi, Chem. Soc. Rev. 2012, 41,
2323-2343; c) C. R. Keenan, R. Goth-Goldstein, D. Lucas,
D. L. Sedlak, Environ. Sci. Technol. 2009, 43, 4555-4560.
a) C. S. Lim, N. D. Vaziri, Kidney Int. 2004, 65, 1802-1809;
b) Y. J. Yauger, S. Bermudez, K. E. Moritz, E. Glaser, B.
Stoica, K. R. Byrnes, J. Neuroinflamm. 2019, 16, 41-56.
N. Kishimoto, T. Kitamura, M. Kato, H. Otsu, J. Water
Environ. Tech. 2013, 11, 21-32.
a) W. Xuan, Y. Xia, T. Li, L. Wang, Y. Liu, W. Tan, J. Am.
Chem. Soc. 2019, 142, 937-944; b) J. Zhang, L. Ning, J.
Huang, C. Zhang, K. Pu, Chem. Sci. 2020, 618-630; c) Y.
Jiang, J. Huang, X. Zhen, Z. Zeng, J. Li, C. Xie, Q. Miao, J.
Chen, P. Chen, K. Pu, Nat Commun 2019, 10, 10; d) Y.
Jiang, X. Zhao, J. Huang, J. Li, P. K. Upputuri, H. Sun, X.
Han, M. Pramanik, Y. Miao, H. Duan, K. Pu, R. Zhang, Nat.
Commun. 2020, 11, 1857; e) J. Huang, J. Li, Y. Lyu, Q.
Miao, K. Pu, Nat. Mater. 2019, 18, 1133-1143.
[8]
[9]
[10]
[11]
[12]
Acknowledgements
This work is financially supported by National Key R&D Program
of China (2018YFA0704000, 2020YFA0908800), the Guangdong
Province Natural Science Foundation of Major Basic Research
and Cultivation Project (2018B030308003), the Basic Research
Program
JCYJ20180507182413022,
Shenzhen Science
of
Shenzhen
(JCYJ20200109105620482,
JCYJ20170412111100742),
[13]
a) X. Mu, Y. Lu, F. Wu, Y. Wei, H. Ma, Y. Zhao, J. Sun, S.
Liu, X. Zhou, Z. Li, Adv. Mater. 2020, 32, e1906711; b) X.
Gao, G. Ma, C. Jiang, L. Zeng, S. Jiang, P. Huang, J. Lin,
Anal. Chem. 2019, 91, 7112-7117; c) S. He, J. Li, Y. Lyu, J.
Huang, K. Pu, J. Am. Chem. Soc. 2020, 142, 7075-7082; d)
J. Huang, K. Pu, Angew. Chem. Int. Ed. Engl. 2020, 59,
11717-11731; e) L. Zeng, G. Ma, J. Lin, P. Huang, Small,
2018, 14, e1800782; f) S. Wang, J. Lin, T. Wang, X. Chen,
P. Huang, Theranostics, 2016, 6, 2394-2413.
and
Technology
Program
(KQTD20190929172538530) We thank Instrumental Analysis
Center of Shenzhen University (Lihu Campus).
Keywords: Chemodynamic therapy • Ferrous ion delivery • Dual
modality imaging • Synergistic therapy • Fenton reaction
[14]
[15]
L. Zeng, G. Ma, H. Xu, J. Mu, F. Li, X. Gao, Z. Deng, J. Qu,
P. Huang, J. Lin, Small 2019, 15, e1803866.
References:
a) K. Klehs, C. Spahn, U. Endesfelder, S. F. Lee, A.
Fürstenberg, M. Heilemann, Chem. Phys. Chem. 2014, 15,
637-641; b) C. Gude, W. Rettig, J. Phys. Chem. A 2000,
104, 8050-8057; c) S. Upadhyayula, V. Nunez, E. M.
Espinoza, J. M. Larsen, D. Bao, D. Shi, J. T. Mac, B. Anvari,
V. I. Vullev, Chem. Sci. 2015, 6, 2237-2251.
a) B. Andreiuk, A. Reisch, M. Lindecker, G. Follain, N.
Peyrieras, J. G. Goetz, A. S. Klymchenko, Small 2017, 13,
1701582-1701595; b) D. Hu, C. Liu, L. Song, H. Cui, G. Gao,
P. Liu, Z. Sheng, L. Cai, Nanoscale 2016, 8, 17150-17158;
c) M. A. Sowers, J. R. McCombs, Y. Wang, J. T. Paletta, S.
W. Morton, E. C. Dreaden, M. D. Boska, M. F. Ottaviani, P.
T. Hammond, A. Rajca, J. A. Johnson, Nat. Commun. 2014,
5, 5460.
C. Sun, B. Li, M. Zhao, S. Wang, Z. Lei, L. Lu, H. Zhang, L.
Feng, C. Dou, D. Yin, H. Xu, Y. Cheng, F. Zhang, J. Am.
Chem. Soc. 2019, 141, 19221-19225.
K. Zhang, H. Y. Li, J. Y. Lang, X. T. Li, W. W. Yue, Y. F. Yin,
D. Du, Y. Fang, H. Wu, Y. X. Zhao, C. Xu, Adv. Funct. Mater.
2019, 29, 1905124.
[1]
a) J. Imlay, S. Linn, Science 1988, 240, 1302-1309; b) Z.
Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. Engl.
2019, 58, 946-956; c) Z. Ren, S. Sun, R. Sun, G. Cui, L.
Hong, B. Rao, A. Li, Z. Yu, Q. Kan, Z. Mao, Adv. Mater.
2020, 32, e1906024; d) Y. Wang, L. Shi, Z. Ye, K. Guan, L.
Teng, J. Wu, X. Yin, G. Song, X.-B. Zhang, Nano Lett. 2019,
20, 176-183.
[16]
[2]
a) T. Wang, H. Zhang, H. Liu, Q. Yuan, F. Ren, Y. Han, Q.
Sun, Z. Li, M. Gao, Adv. Funct. Mater. 2019, 30, 1906128;
b) L.-H. Fu, Y.-R. Hu, C. Qi, T. He, S. Jiang, C. Jiang, J. He,
J. Qu, J. Lin, P. Huang, ACS Nano 2019, 13, 13985-13994;
c) C. Yang, M. R. Younis, J.Zhang, J. Qu, J. Lin, P. Huang,
Small 2020, 16, e2001518; d) T. He, X. Qin, C. Jiang, D.
Jiang, S. Lei, J. Lin, W.-G. Zhu, J. Qu, P. Huang,
Theranostics 2020, 10, 2453-2462; e) Y. Zhang, Y. Wan, Y.
Liao, Y. Hu, T. Jiang, T. He, W. Bi, J. Lin, P. Gong, L. Tang,
P. Huang, Sci. Bull. 2020, 65, 564-572.
[17]
[18]
[19]
[3]
a) X. Chen, H. Zhang, M. Zhang, P. Zhao, R. Song, T. Gong,
Y. Liu, X. He, K. Zhao, W. Bu, Adv. Funct. Mater. 2019, 30,
1908365; b) S. He, Y. Jiang, J. Li, K. Pu, Angew. Chem. Int.
Ed. Engl. 2020, 132, 10633-10638.
a) B. Li, M. Zhao, F. Zhang, ACS Mater. Lett. 2020, 2, 905-
917; b) T. Hirayama, H. Nagasawa, J. Clin. Biochem. Nutr.
2017, 60, 39-48.
7
This article is protected by copyright. All rights reserved.