D
N. Amri et al.
Cluster
Synlett
References and Notes
(8) (a) Kuleshova, J.; Hill-Cousins, J. T.; Birkin, P. R.; Brown, R. C. D.;
Pletcher, D.; Underwood, T. J. Electrochim. Acta 2012, 69, 197.
(b) Green, R. A.; Brown, R. C. D.; Pletcher, D.; Harji, B. Org.
Process Res. Dev. 2015, 19, 1424. (c) Green, R. A.; Brown, R. C. D.;
Pletcher, D.; Harji, B. Electrochem. Commun. 2016, 73, 63.
(d) Folgueiras-Amador, A. A.; Jolley, K. E.; Birkin, P. R.; Brown, R.
C. D.; Pletcher, D.; Pickering, S.; Sharabi, M.; de Frutos, O.;
Mateos, C.; Rincón, J. A. Electrochem. Commun. 2019, 100, 6.
(9) 18% Cr, 8% Ni.
(10) Amemiya, F.; Kashiwagi, T.; Fuchigami, T.; Atobe, M. Chem. Lett.
2011, 40, 606.
(11) Cedheim, L.; Eberson, L.; Helgee, B.; Nyberg, K.; Servin, R.;
Sternerup, H. Acta Chem. Scand., Ser. B 1975, 29, 617.
(12) Chapman, M. R.; Shafi, Y. M.; Kapur, N.; Nguyen, B. N.; Willans,
C. E. Chem. Commun. 2015, 51, 1282.
(1) (a) Little, R. D.; Moeller, K. D. Chem. Rev. 2018, 118, 4483.
(b) Francke, R.; Schille, B.; Roemelt, M. Chem. Rev. 2018, 118,
4631. (c) Yoshida, J. I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018,
118, 4702. (d) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
(e) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118,
4834.
(2) (a) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.;
Vasquez-Medrano, R. Green Chem. 2010, 12, 2099. (b) Organic
Electrochemistry, 5th ed.; Hammerich, O.; Speiser, B., Ed.; CRC
Press: Boca Raton, 2015. (c) Horn, E. J.; Rosen, B. R.; Baran, P. S.
ACS Cent. Sci. 2016, 2, 302.
(3) (a) Yoshida, J. Electrochem. Soc. Interface 2009, (Summer) 40.
(b) Folgueiras-Amador, A. A.; Wirth, T. J. Flow Chem. 2017, 7, 94.
(c) Atobe, M.; Tateno, H.; Matsumura, Y. Chem. Rev. 2018, 118,
4541. (d) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev.
2018, 118, 4573. (e) Folgueiras-Amador, A. A.; Wirth, T. In Flow
Chemistry in Organic Synthesis; Jamison, T. F.; Koch, G., Ed.;
Thieme: Stuttgart, 2018, Chap. 5, 147.
(13) (a) Liebner, R.; Schmid, P.; Adelwöhrer, C.; Rosenau, T. Tetrahe-
dron 2007, 63, 11817. (b) Stewart, W. E.; Siddall, T. H. Chem. Rev.
1970, 70, 517.
(14) Mitzlaff, M.; Warning, K.; Jensen, H. Liebigs Ann. Chem. 1978,
1713.
(4) Yoo, S. J.; Li, L.-J.; Zeng, C.-C.; Little, R. D. Angew. Chem. Int. Ed.
2015, 54, 3744.
(15) 2-Methoxypyrrolidine-1-carbaldehyde (2); Typical Proce-
dure
(5) (a) Horii, D.; Atobe, M.; Fuchigami, T.; Marken, F. Electrochem.
Commun. 2005, 7, 35. (b) Horcajada, R.; Okajima, M.; Suga, S.;
Yoshida, J.-i. Chem. Commun. 2005, 1303. (c) He, P.; Watts, P.;
Marken, F.; Haswell, S. J. Angew. Chem. Int. Ed. 2006, 45, 4146.
(d) Kuleshova, J.; Hill-Cousins, J. T.; Birkin, P. R.; Brown, R. C. D.;
Pletcher, D.; Underwood, T. J. Electrochim. Acta 2011, 56, 4322.
(e) Attour, A.; Dirrenberger, P.; Rode, S.; Ziogas, A.; Matlosz, M.;
Lapicque, F. Chem. Eng. Sci. 2011, 66, 480. (f) Kashiwagi, T.;
Elsler, B.; Waldvogel, S. R.; Fuchigami, T.; Atobe, M. J. Electro-
chem. Soc. 2013, 160, G3058.
(6) (a) Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011,
7, 1108. (b) Arai, K.; Watts, K.; Wirth, T. ChemistryOpen 2014, 3,
23. (c) Arai, K.; Wirth, T. Org. Process Res. Dev. 2014, 18, 1377.
(d) Folgueiras-Amador, A. A.; Philipps, K.; Guilbaud, S.;
Poelakker, J.; Wirth, T. Angew. Chem. Int. Ed. 2017, 56, 15446.
(e) Folgueiras-Amador, A. A.; Qian, X.-Y.; Xu, H.-C.; Wirth, T.
Chem. Eur. J. 2018, 24, 487. (f) Gao, W.-C.; Xiong, Z.-Y.;
Pirhaghani, S.; Wirth, T. Synthesis 2019, 51, 276. (g) Islam, M.;
Kariuki, B. M.; Shafiq, Z.; Wirth, T.; Ahmed, N. Eur. J. Org. Chem.
2019, 1371.
A 0.1 M solution of aldehyde 1 in MeOH (60 mL) containing
Et4NBF4 (0.05 M) was sonicated to ensure complete dissolution
of the reactant, then pumped through one microreactor at 0.5
mL/min by using a syringe pump or the Vapourtec E series,
while a constant current of 640 mA was applied. The first 5 mL
were discarded, and the remaining reaction mixture was col-
lected for 110 min (55 mL). MeOH was removed under reduced
pressure, and the crude product was washed with H2O (50 mL),
to remove the supporting electrolyte, then extracted with
CH2Cl2 (3 × 30 mL). The organic layers were combined, dried
(MgSO4), filtered, evaporated, and dried under high vacuum.
The residue was purified by chromatography [silica gel,
hexane–EtOAc (1:1)] to give a colorless oil; yield: 629 mg (89%).
The NMR spectra showed the presence of a ~5:1 mixture of
rotamers.1H NMR (400 MHz, CDCl3): (major) = 8.40 (s, 1 H),
4.92 (d, J = 4.8 Hz, 1 H), 3.58−3.40 (m, 2 H), 3.26 (s, 3 H),
2.13−1.79 (m, 4 H); (minor) = 8.29 (s, 1 H), 5.37 (d, J = 4.8 Hz, 1
H), 3.58−3.40 (m, 2 H), 3.38 (s, 3 H), 2.13−1.79 (m, 4 H). 13C NMR
(101 MHz, CDCl3): (major) = 161.4, 89.7, 54.4, 42.7, 31.8, 21.4;
(minor) = 162.6, 85.5, 56.6, 45.2, 31.9, 22.1.
(7) For details of the Ion electrochemical reactor, see:
trochemical-reactor-features/ (accessed Mar 15, 2019).
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D