HOSSEINI ESHBALA ET AL.
5
TABLE 3 Oxidation of benzyl alcohol with H2O2 in the presence of various catalysts
Entry
Catalyst
H2O2 (eq.)
Solvent
Temp. (°C)
Time (min)
Yield (%)
Ref.
[20]
[17]
[21]
[19]
[17]
[8]
1
2
3
4
5
6
7
8
9
Q+HSO4−/Na2WO4
[WO(O2)2(QO)]−
Na2WO4⋅2H2O
MNP@PILW
1.5
4
No solvent
CH3CN
90
78
90
90
90
r.t.
80
r.t.
r.t.
300
900
60
87
89
90
95
75
98
91
82
99
1.2
4
DMA
No solvent
CH3CN:H2O
No solvent
Toluene
CH3CN
90
WO4=@PMO‐IL
5
720
360
45
[PEO‐didodecylimidazolium]3[PW12O40 2
]
2
[8]
RuCl3⋅3H2O/DDAB
2.7
5
[48]
[FeCl3(P‐DPEphos)(P,P‐DPEphos)]
((triazine‐2,4,6‐triyl)tris(1‐octyl‐1H‐imidazol‐3‐ium))2(WO4
360
5
=
)
2
H2O
This work
3
309, 1824. f) D. I. Enache, J. K. Edwards, P. London, B. Solsona‐Espriu,
A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight,
G. J. Hutchings, Science 2006, 311, 362. g) S. Kanaoka, N. Yagi, Y. Fuku-
yama, S. Aoshima, H. Tsunoyama, T. Tsukuda, H. Sakurai, J. Am. Chem.
Soc. 2007, 129, 12060. h) B. Karimi, A. Biglari, J. H. Clark, V. Budarin,
Angew. Chem. 2007, 46, 7210. i) B. Karimi, A. Zamani, S. Abedi,
J. H. Clark, Green Chem. 2009, 11, 109. j) K. Kaizuka, H. Miyamura,
S. Kobayashi, J. Am. Chem. Soc. 2010, 132, 15096. k) B. Karimi,
E. Farhangi, Chem. – Eur. J. 2011, 17, 6056. l) Y. L. Hu, D. Fang,
C. R. Chim. 2015, 18, 614.
4
|
CONCLUSIONS
We have shown that tris‐octylimidazolium tungstate salt
prepared through a simple ion exchange technique is a highly
recoverable and effective catalyst for selective oxidation of
alcohols to their corresponding carbonyl compounds under
base‐ or acid‐free conditions without the need to any external
phase transfer additives. The studies show that primary aro-
matic alcohols are selectively converted to the corresponding
aldehyde without any over‐oxidation to the corresponding
carboxylic acids under the reaction conditions. The catalyst
is successfully recovered from the reaction mixture and can
then be reused for at least seven subsequent reaction cycles
with only slight decreases in its activity and selectivity. It is
believed that the imidazolium moieties not only provide a
means of immobilizing tungstate species through simple ion
exchange techniques and preventing their leaching into the
reaction medium, but also they can operate as a phase transfer
catalyst. The mild reaction conditions, simple experimental
procedure, rapid conversion, good yields and reusability of
the catalyst are notable advantages of the method. Further
research on the practical applications of heterogeneous
catalysts is underway in our laboratory.
[8] a) G. Barak, J. Dakka, Y. Sasson, J. Org. Chem. 1988, 53, 3553. b) K. Sato,
M. Aoki, J. Takagi, R. Noyori, J. Am. Chem. Soc. 1997, 119, 12386. c)
Z. Wang, Y. Yang, X. Cao, M. Lu, J. Iran. Chem. Soc. 2015, 12, 1765. d)
R. Noyori, M. Aoki, K. Sato, Chem. Commun. 1977, 2003. e) H. Veisi, F.
H. Eshbala, S. Hemmati, M. Baghayeri, RSC Adv. 2015, 5, 10152.
[9] J. Dudas, C. J. Parkinson, V. Cukan, T. B. Chokwe, Org. Process Res. Dev.
2005, 9, 976.
[10] a) P. Tundo, P. G. Romanelli, P. G. Vazquez, F. Arico, Catal. Commun. 2010,
11, 1181. b) C. D. Nunes, A. A. Valente, M. Pillinger, J. Rocha, I. S.
Goncalves, Chem. – Eur. J. 2003, 9, 4380.
[11] a) A. Berkessel, C. A. Skorz, Tetrahedron Lett. 1999, 40, 7965. b) Z. Ye, Z.
Fu, S. Zhong, F. Xie, X. Zhou, F. Liu, D. Yin, J. Catal. 2009, 261, 110. c)
P. Saisaha, L. Buettner, M. van der Meer, R. Hage, B. L. Feringa,
W. R. Browne, J. W. de Boer, Adv. Synth. Catal. 2013, 355, 2591.
[12] a) S. E. Martín, A. Garrone, Tetrahedron Lett. 2003, 44, 549.
b) S. Masoudian, H. H. Monfared, A. Aghaei, Transition Met. Chem. 2011,
36, 521.
[13] a) J. Liu, F. Wang, K. Sun, X. Xu, Catal. Commun. 2008, 9, 386. b) M.
Santonastaso, S. J. Freakley, P. J. Miedziak, G. L. Brett, J. K. Edwards, G.
J. Hutchings, Org. Process Res. Dev. 2014, 18, 1455.
ACKNOWLEDGMENTS
We acknowledge the Iranian Research Organization for
Science and Technology (IROST) for supporting this work.
[14] T. H. Zauche, J. H. Espenson, Inorg. Chem. 1998, 37, 6827.
[15] V. Kogan, M. M. Quintal, R. Neumann, Org. Lett. 2005, 7, 5039.
[16] a) S. Velusamy, T. Punniyamurthy, Eur. J. Org. Chem. 2003, 3913. b) D.
Baruah, U. P. Saikia, P. Pahari, D. Konwar, Tetrahedron Lett. 2015, 56, 2543.
REFERENCES
[1] R. W. Dugger, J. A. Ragan, D. H. B. Ripin, Org. Process Res. Dev. 2005,
9, 253.
[17] a) M. V. Vasylyev, R. Neumann, J. Am. Chem. Soc. 2004, 126, 884. b) B.
Karimi, F. B. Rostami, M. Khorasani, D. Elhamifar, H. Vali, Tetrahedron
2014, 70, 6114. c) S. K. Maiti, S. Banerjee, A. K. Mukherjee, K. M. A.
Malik, R. Bhattacharyya, New J. Chem. 2005, 29, 554.
[2] J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem.
2006, 4, 2337.
[3] S. V. Ley, A. Madfin, in Comprehensive Organic Synthesis, (Eds: B. M.
Trost, I. Fleming, S. V. Ley) Vol. 7, Pergamon, Oxford 1991, 251.
[18] S. E. Jacobson, F. Mares, D. A. Muccigarasso, J. Org. Chem. 1979, 44, 921.
[19] a) R. Ishii, M. Ogawa, K. Yamawaki, H. Yamada, T. Yoshida, J. Org. Chem.
1988, 53, 3587. b) B. S. Chhikara, R. Chandra, V. Tandon, J. Catal. 2005,
230, 436. c) M. Carraro, L. Sandei, A. Sartorel, G. Scorrano, M. Bonchio,
Org. Lett. 2006, 8, 3671. d) Y. Zhao, B. Zhang, Y. Ma, W. Ding, W. Y.
Qiu, Catal. Commun. 2010, 11, 527. e) Y. M. A. Yamada, K. Jin, Y. Uozumi,
Org. Lett. 2010, 12, 4540. f) A. Pourjavadi, S. H. Hosseini, F. M.
Moghaddam, B. K. Foroushani, C. Bennett, Green Chem. 2013, 15, 2913.
[4] A. J. Mancuso, S. L. Huang, D. J. Swern, Org. Chem. 1978, 12, 2480.
[5] C. Djerassi, Org. React. 1944, 6, 207.
[6] D. B. Dess, J. C. J. Martin, Org. Chem. 1983, 48, 4155.
[7] a) H. R. Bjørsvik, L. Liguori, F. Costantino, F. Minisci, Org. Process Res.
Dev. 2002, 6, 197. b) K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda,
J. Am. Chem. Soc. 2004, 126, 10657. c) A. Abad, P. Concepcion, A. Corma,
H. Garcia, Angew. Chem. Int. Ed. 2005, 44, 4066. d) B. Karimi, A. Zamani,
J. H. Clark, Organometallics 2005, 24, 4695. e) S. S. Stahl, Science 2005,
[20] R. Noyori, M. Aoki, K. Sato, Chem. Commun. 1977, 2003.
[21] T. Hida, H. Nogusa, Tetrahedron 2009, 65, 270.