18 J. C. Middleton and A. J. Tipton, Synthetic biodegradable polymers
as orthopedic devices, Biomaterials, 2000, 21(23), 2335–2346.
19 L. L. Hench, Prosthetic implant materials, Annu. Rev. Mater. Sci.,
1975, 5(1), 279–300.
20 S. Mukherjee, C. Gualandi, M. Focarete, R. Ravichandran,
J. Venugopal, M. Raghunath and S. Ramakrishna, Elastomeric
electrospun scaffolds of poly(L-lactide-co-trimethylene carbonate)
for myocardial tissue engineering, J. Mater. Sci.: Mater. Med.,
2011, 22(7), 1689–1699.
Association of Orthodontist Foundation, and UNC University
Research Council. We thank Wonhee Jeong for many useful
discussions regarding our work and John Whitley for his assis-
tance in characterizing and testing polymers and composites.
Additionally we thank Purac Biomaterials for their generous
donation of L-lactide for this project.
21 L. Zheng, F. Yang, H. Shen, X. Hu, C. Mochizuki, M. Sato, S. Wang
and Y. Zhang, The effect of composition of calcium phosphate
composite scaffolds on the formation of tooth tissue from human
dental pulp stem cells, Biomaterials, 2011, 32(29), 7053–7059.
22 M. C. Chang, C.-C. Ko and W. H. Douglas, Preparation of
hydroxyapatite–gelatin nanocomposite, Biomaterials, 2003, 24(17),
2853–2862.
23 C. C. Ko, M. Oyen, A. M. Fallgatter and W.-S. Hu, Mechanical
properties and cytocompatibility of biomimetic hydroxyapatite-
gelatin nanocomposites, J. Mater. Res., 2006, 21(12), 8.
24 C. C. Ko, Y.-L. Wu, W. H. Douglas and R. Narayanan, In vitro and
In vivo Tests of Hydroxyapatite-Gelatin Nanocomposites for Bone
Regeneration, A Preliminary Report in Biological and Bioinspired
Materials and Devices, Symposium Proceedings Material Research
Society Spring Meeting, ed. J. Aizenberg, W. J. Landis, C. Orme,
R. Wang and W.-S. Hu, 2004, 823, 5.
25 T.-J. Luo, C.-C. Ko, C.-K. Chiu, J. Llyod and U. Huh, Aminosilane
as an effective binder for hydroxyapatite–gelatin nanocomposites,
J. Sol-Gel Sci. Technol., 2010, 53(2), 459–465.
26 X. Deng, J. Hao and C. Wang, Preparation and mechanical
properties of nanocomposites of poly(D, L-lactide) with Ca-deficient
hydroxyapatite nanocrystals, Biomaterials, 2001, 22(21), 2867–2873.
27 M. Todo and T. Kagawa, Improvement of fracture energy of HA–
PLLA biocomposite material due to press processing, J. Mater.
Sci., 2008, 43(2), 799–801.
28 L. Zhang, S. H. Goh and S. Y. Lee, Miscibility and crystallization
behaviour of poly(L-lactide)/poly(p-vinylphenol) blends, Polymer,
1998, 39(20), 4841–4847.
29 C. Zhang, H. Subramanian, J. J. Grailer, A. Tiwari, S. Pilla,
D. A. Steeber and S. Gong, Fabrication of biodegradable
poly(trimethylene carbonate) networks for potential tissue
engineering scaffold applications, Polym. Adv. Technol., 2009, 20(9),
742–747.
30 E. Ruckenstein and Y. Yuan, Molten ring-open copolymerization of
L-lactide and cyclic trimethylene carbonate, J. Appl. Polym. Sci., 1998,
69(7), 1429–1434.
31 L.-J. Ji, K.-L. Lai, B. He, G. Wang, L.-Q. Song, Y. Wu and Z.-W. Gu,
Study on poly(L-lactide-co-trimethylene carbonate): synthesis and
cell compatibility of electrospun film, Biomed. Mater., 2010, 5(4),
045009.
References
1 R. A. Field, M. L. Riley, F. C. Mello, J. H. Corbridge and
A. W. Kotula, Bone composition in cattle, pigs, sheep and poultry,
J. Anim. Sci., 1974, 39(3), 493–499.
2 D. Puppi, F. Chiellini, A. M. Piras and E. Chiellini, Polymeric
materials for bone and cartilage repair, Prog. Polym. Sci., 2010,
35(4), 403–440.
3 M. S. Shoichet, Polymer scaffolds for biomaterials applications,
Macromolecules, 2009, 43(2), 581–591.
4 M. Bongio, J. J. J. P. van den Beucken, S. C. G. Leeuwenburgh and
J. A. Jansen, Development of bone substitute materials: from
‘biocompatible’ to ‘instructive’, J. Mater. Chem., 2010, 20(40),
8747–8759.
5 H. R. Imam Khasim, S. Henning, G. H. Michler and J. Brand,
Development of nanocomposite scaffolds for bone tissue
engineering, Macromol. Symp., 2010, 294(1), 144–152.
6 K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini,
Biodegradable and bioactive porous polymer–inorganic composite
scaffolds for bone tissue engineering, Biomaterials, 2006, 27(18),
3413–3431.
7 J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier
ꢀ ^
and R. Jerome, Development and in vitro characterisation of novel
bioresorbable and bioactive composite materials based on
polylactide foams and Bioglassꢀ for tissue engineering applications,
Biomaterials, 2002, 23(18), 3871–3878.
8 H. Declercq, M. Cornelissen, T. Gorskiy and E. Schacht, Osteoblast
behaviour on in situ photopolymerizable three-dimensional scaffolds
based on D, L-lactide, 3-caprolactone and trimethylene carbonate,
J. Mater. Sci.: Mater. Med., 2006, 17(2), 113–122.
9 J. K. Oh, Polylactide (PLA)-based amphiphilic block copolymers:
synthesis, self-assembly, and biomedical applications, Soft Matter,
2011, 7(11), 5096–5108.
10 X. Jiang, E. B. Vogel, M. R. Smith and G. L. Baker, ‘‘Clickable’’
polyglycolides: tunable synthons for thermoresponsive, degradable
polymers, Macromolecules, 2008, 41(6), 1937–1944.
11 P. Shokrollahi, H. Mirzadeh, O. A. Scherman and W. T. S. Huck,
Biological and mechanical properties of novel composites based
on
supramolecular
polycaprolactone
and
functionalized
32 T. Tyson, A. Finne-Wistrand and A.-C. Albertsson, Degradable
porous scaffolds from various L-lactide and trimethylene carbonate
hydroxyapatite, J. Biomed. Mater. Res., Part A, 2010, 95(1), 209–221.
12 Y. Zhou, D. W. Hutmacher, S.-L. Varawan and T. M. Lim, In vitro
bone engineering based on polycaprolactone and polycaprolactone–
tricalcium phosphate composites, Polym. Int., 2007, 56(3), 333–342.
13 E. Bat, T. G. van Kooten, J. Feijen and D. W. Grijpma, Crosslinking
of trimethylene carbonate and D, L-lactide (co-) polymers by gamma
irradiation in the presence of pentaerythritol triacrylate, Macromol.
Biosci., 2011, 11(7), 952–961.
copolymers obtained by
Biomacromolecules, 2008, 10(1), 149–154.
a
simple and effective method,
33 F. Nederberg, B. G. G. Lohmeijer, F. Leibfarth, R. C. Pratt, J. Choi,
A. P. Dove, R. M. Waymouth and J. L. Hedrick, Organocatalytic ring
opening
polymerization
of
Biomacromolecules, 2006, 8(1), 153–160.
trimethylene
carbonate,
34 E. J. Vandenberg and D. Tian, A new, crystalline high melting
bis(hydroxymethyl)polycarbonate and its acetone ketal for
biomaterial applications, Macromolecules, 1999, 32(11), 3613–3619.
35 C. Durucan and P. W. Brown, Biodegradable hydroxyapatite–
polymer composites, Adv. Eng. Mater., 2001, 3(4), 227–231.
14 N. Andronova and A.-C. Albertsson, Resilient bioresorbable
copolymers based on trimethylene carbonate, L-lactide, and 1,5-
dioxepan-2-one, Biomacromolecules, 2006, 7(5), 1489–1495.
15 B. L. Dargaville, C. Vaquette, H. Peng, F. Rasoul, Y. Q. Chau,
J. J. Cooper-White, J. H. Campbell and A. K. Whittaker, Cross-
linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable,
elastomeric scaffold for vascular engineering applications,
Biomacromolecules, 2011, 12(11), 3856–3869.
€
36 F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Silica-based
mesoporous organic–inorganic hybrid materials, Angew. Chem., Int.
Ed., 2006, 45(20), 3216–3251.
37 J.-F. Lutz, 1,3-Dipolar cycloadditions of azides and alkynes: a
universal ligation tool in polymer and materials Science, Angew.
Chem., Int. Ed., 2007, 46(7), 1018–1025.
38 W. H. Binder and R. Sachsenhofer, ‘Click’ chemistry in polymer and
materials science, Macromol. Rapid Commun., 2007, 28(1), 15–54.
39 W. Chen, H. Yang, R. Wang, R. Cheng, F. Meng, W. Wei and
Z. Zhong, Versatile synthesis of functional biodegradable polymers
by combining ring-opening polymerization and postpolymerization
modification via Michael-type addition reaction, Macromolecules,
2010, 43(1), 201–207.
16 T. Jiang, S. P. Nukavarapu, M. Deng, E. Jabbarzadeh, M. D. Kofron,
S. B. Doty, W. I. Abdel-Fattah and C. T. Laurencin, Chitosan-
poly(lactide-co-glycolide) microsphere-based scaffolds for bone
tissue engineering: in vitro degradation and in vivo bone
regeneration studies, Acta Biomater., 2010, 6(9), 3457–3470.
17 E. Bat, J. e. A. Plantinga, M. C. Harmsen, M. J. A. van Luyn,
Z. Zhang, D. W. Grijpma and J. Feijen, Trimethylene carbonate
and 3-caprolactone based (co)polymer networks: mechanical
properties and enzymatic degradation, Biomacromolecules, 2008,
9(11), 3208–3215.
J. Mater. Chem.
This journal is ª The Royal Society of Chemistry 2012