D. Sil et al. / Tetrahedron Letters 47 (2006) 3759–3762
3761
9. Brown, E.; Robin, J.-P.; Dhal, R. Tetrahedron 1982, 38,
2569–2579.
10. Semmelhack, M. F.; Helquist, P.; Lones, L. D.; Keller, L.;
Mendelson, L.; Royono, L. S.; Smith, J. G.; Stauffer, R.
D. J. Am. Chem. Soc. 1981, 103, 6460–6471.
11. Taylor, W. I.; Battersby, A. R. In Oxidative Coupling of
Phenols; Marcel Dekker: New York, 1967; Vol. 1.
12. Kjonaas, R. A.; Shubert, D. C. J. Org. Chem. 1983, 48,
1924–1925.
13. Landais, Y.; Lebrun, A.; Lenain, U.; Robin, J.-P. Tetra-
hedron Lett. 1987, 28, 5161–5164.
14. Landais, Y.; Rambault, D.; Robin, J.-P. Tetrahedron Lett.
1987, 28, 543–546.
15. Hauser, F. M.; Gauuan, P. J. F. Org. Lett. 1999, 1, 671–
672.
16. Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1994, 35,
3259–3262.
Figure 1. The ORTEP (30% probability) diagram of 8a with the
atomic numbering scheme.
17. Taylor, S. K.; Bennet, S. G.; Heinz, K. J.; Lashley, L. K.
J. Org. Chem. 1981, 46, 2194–2196.
18. (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun.
1981, 11, 513–519; (b) Suzuki, A. Pure Appl. Chem. 1991,
63, 419–422.
19. Suzuki, A.; Miyaura, N. Chem. Rev. 1995, 95, 2457–2483.
20. (a) Marck, G.; Villiger, A.; Buchecker, R. Tetrahedron
Lett. 1994, 35, 3277–3280; (b) Wallow, T. I.; Novak, B. M.
J. Org. Chem. 1994, 59, 5034–5037.
21. Villemin, D.; Gomez-Escalonilla, M. J.; Saint-Clair, J.-F.
Tetrahedron Lett. 2001, 42, 635–637.
22. (a) Meyers, A. I.; Meier, A.; Rawson, D. J. Tetrahedron
Lett. 1992, 33, 853–856; (b) Warshawsky, A. M.; Meyers,
A. I. J. Am. Chem. Soc. 1990, 112, 8090–8099.
23. (a) Ram, V. J.; Agarwal, N. Tetrahedron Lett. 2001, 42,
7127–7129; (b) Saxena, A. S.; Goel, A.; Ram, V. J. Synlett
2002, 1491–1492.
24. (a) Ram, V. J.; Verma, M.; Hussain, F. A.; Shoeb, A. J.
Chem. Res. (S) 1991, 98–99; (b) Ram, V. J.; Verma, M.;
Hussain, F. A.; Shoeb, A. Liebigs Ann. Chem. 1991, 1229–
1231.
2H-Pyran-2-one 1 has three electrophilic centres at C-2,
C-4 and C-6 in which the latter is highly vulnerable to
nucleophilic attack owing to extended conjugation and
the presence of an electron withdrawing substituent
(CN) at position 3 of the pyran ring. Thus, the carban-
ion generated in situ from 4-alkyl/arylsulfanyl-butan-2-
one attacks at C-6 with ring closure followed by the
elimination of carbon dioxide and water affording 8,
as shown in Scheme 1. Thus, a mixture of 2H-pyran-2-
one 1, methyl vinyl ketone 2 and powdered KOH in
DMF was stirred at room temperature for 24 h to give
8a–j. All the synthesized compounds were character-
ized26 by spectroscopic and elemental analysis.
Figure 1 shows the crystal structure of 8a.26 The mole-
cule consists of two phenyl rings with one twisted at
C-6 by 54.2(1)ꢁ from the least-squares mean plane
through the substituted phenyl ring. The crystal packing
reveals the presence of weak intermolecular SÁ Á ÁAr
interactions between S2 and the centroid of the substi-
25. Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68,
2109.
˚
tuted phenyl ring [1 À x, 1 À y, 1 À z; S2Á Á ÁCg: 3.857 A].
26. Typical procedure for the synthesis of 8: A mixture of 2H-
pyran-2-one 1 (1 mmol), methyl vinyl ketone 2 (1.5 mmol)
and powdered KOH (1.5 mmol) in dry DMF was stirred
for 24 h at room temperature. The reaction mixture was
poured onto ice water and neutralized with 10% HCl. The
separated solid was filtered, washed with water and dried.
The crude product was purified by silica gel column
chromatography to afford 8 in moderate yield. Compound
8a: Yield 40%; mp 106–108 ꢁC; IR (KBr) m 2213 cmÀ1
Our procedure provides an easy access for the synthesis
of sulfanylated asymmetrical hindered biaryls in a single
step.
Acknowledgement
1
(CN); H NMR (200 MHz, CDCl3) d 1.95 (s, 3H, CH3),
D.S. is thankful to CSIR for Senior Research Fellow-
ship.
2.51 (s, 3H, SCH3), 2.72 (s, 3H, SCH3), 3.59 (s, 2H, CH2),
6.98 (s, 1H, ArH), 7.42–7.44 (m, 5H, ArH); MS (FAB) 300
(M++1). Anal. Calcd for C17H17NS2: C, 68.18; H, 5.72; N,
4.68. Found: C, 68.40; H, 5.66; N, 4.44. Compound 8b:
Yield 38%; mp 104–106 ꢁC; IR (KBr) m 2212 cmÀ1 (CN);
1H NMR (200 MHz, CDCl3) d 1.96 (s, 3H, CH3), 2.43 (s,
3H, CH3), 2.50 (s, 3H, SCH3), 2.71 (s, 3H, SCH3), 3.60 (s,
2H, CH2), 6.97 (s, 1H, ArH), 7.23–7.33 (m, 4H, ArH); MS
(FAB) 314 (M++1). Anal. Calcd for C18H19NS2: C, 68.96;
H, 6.11; N, 4.47. Found: C, 69.29; H, 5.86; N, 4.35.
Compound 8c: Yield 45%; mp 110–112 ꢁC; IR (KBr) m
References and notes
´
1. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire,
M. Chem. Rev. 2002, 102, 1359–1469.
2. Noyori, R. Chem. Soc. Rev. 1989, 18, 187–208.
3. Cram, D. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1009–
1112.
4. (a) Yamamura, K.; Ono, S.; Tanshi, I. Tetrahedron Lett.
1988, 29, 1797–1798; (b) Yamamura, K.; Ono, S.; Ogoshi,
H.; Masuda, H.; Kuroda, Y. Synlett 1989, 18–19.
5. Mikes, F.; Boshart, G. J. Chromatogr. 1978, 149, 455–464.
6. Hassan, J.; Sevignon, M.; Gozzi, C.; Shulz, E.; Lemaire,
M. Chem. Rev. 2002, 102, 1359–1469.
1
2214 cmÀ1 (CN); H NMR (200 MHz, CDCl3) d 1.99 (s,
3H, CH3), 2.51 (s, 3H, SCH3), 2.71 (s, 3H, SCH3), 3.56 (s,
2H, CH2), 6.95 (s, 1H, ArH), 7.10–7.19 (m, 2H, ArH)
7.37–7.44 (m, 2H, ArH); MS (FAB) 318 (M++1). Anal.
Calcd for C17H16FNS2: C, 64.32; H, 5.08; N, 4.41. Found:
C, 63.85; H, 4.91; N, 3.96. Compound 8j: Yield 48%;
mp 77–79 ꢁC; IR (KBr) m 2216 cmÀ1 (CN); 1H NMR
(200 MHz, CDCl3) d 1.09 (t, J = 7.40 Hz, 3H, CH3), 1.35
7. Ulman, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174.
8. Fanta, P. E. Synthesis 1974, 9–21.