Organic Letters
Letter
In conclusion, radermachol was prepared in four linear steps,
from commercially available starting materials, and in an overall
yield of 22%, a marked improvement over existing syntheses.
This rapid and efficient synthesis provides a means to
investigate the biological activity of radermachol and perhaps
elucidate its ecological role.
Scheme 4. Total Synthesis of Radermachol
ASSOCIATED CONTENT
* Supporting Information
■
S
General experimental details and specific procedures, character-
ization of new compounds, including 1H and 13C NMR spectra.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the facilities as well as scientific and technical
assistance of Drs. Lindsay Byrne and Anthony Reeder, of the
Australian Microscopy and Microanalysis Research Facility at
the Centre for Microscopy, Characterisation, and Analysis, The
University of Western Australia, a facility funded by the
University, State and Commonwealth Governments. M.B. is the
recipient of an Australian Postgraduate Award.
the enol tautomer of 25 might itself be sufficiently nucleophilic
for our requirements. These musings led us to the work of De
Kimpe and co-workers, who showed that ytterbium triflate
catalyzes the efficient one-pot furannulation of activated
quinones with β-ketoesters.21 A trial reaction of butyl vinyl
ether (2) and quinone 1 (Scheme 1) with this catalyst gave the
formal cycloaddition product 5 at room temperature, and more
efficiently than the thermal procedure, giving us the confidence
to apply this method to radermachol.
β-Ketoester 25 (Scheme 4) was prepared by Claisen-like
condensation of mesityl oxide with Mander’s reagent.22
Pleasingly, in the presence of Yb(OTf)3, 25 reacted with
quinone 23 to give benzofuran 26 in good yield. In situ
deprotonation of the phenol with NaH, followed by lithium−
iodine exchange, allowed intramolecular nucleophilic acylation
involving the methyl ester, providing radermachol in modest
yield, accompanied by some starting material and the
deiodinated product. The NMR spectroscopic data obtained
for radermachol were essentially identical to those previously
reported for the naturally derived material.15 The 13C NMR
spectrum reported by Pelletier16b for synthetic radermachol is
at slight variance with what we and Sing15 observed; the
resonance at 117.3 ppm is missing from Pelletier’s data, and an
additional (spurious) peak at 129.3 ppm was reported. All other
data concur with our spectrum.
REFERENCES
■
(1) Buccini, M.; Jeow, S. Y.; Byrne, L.; Skelton, B. W.; Nguyen, T.
M.; Chai, C. L. L.; Piggott, M. J. Eur. J. Org. Chem. 2013, 3232.
(2) Matsumoto, K.; Kozmin, S. A. Adv. Synth. Catal. 2008, 350, 557.
(3) (a) Eugster, C. H.; Kuser, P. Chimia 1964, 18, 358. (b) Kuser, P.;
Frauenfelder, E. F.; Eugster, C. H. Helv. Chim. Acta 1971, 54, 969.
(c) Cameron, D. W.; Feutrill, G. I.; Sefton, M. A. Aust. J. Chem. 1978,
31, 2099. (d) Cameron, D. W.; Feutrill, G. I.; Patti, A. F.; Perlmutter,
P.; Sefton, M. A. Aust. J. Chem. 1982, 35, 1501. (e) Noland, W. E.;
Kedrowski, B. L. Org. Lett. 2000, 2, 2109. (f) Alvey, L.; Prado, S.;
Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S. T.;
Tillequin, F.; Janin, Y. L. Bioorg. Med. Chem. 2008, 16, 8264.
(4) (a) Brimble, M. A.; Brimble, M. T.; Gibson, J. J. J. Chem. Soc.,
Perkin Trans. 1 1989, 179. (b) Brimble, M. A.; Spicer, J. A. Aust. J.
Chem. 1991, 44, 197. (c) Brimble, M. A.; Neville, D.; Duncalf, L. J.
Tetrahedron Lett. 1998, 39, 5647. (d) Uno, H.; Murakami, S.;
Fujimoto, A.; Yamaoka, Y. Tetrahedron Lett. 2005, 46, 3997.
(5) Schildknecht, H.; Straub, F. Justus Liebigs Ann. Chem. 1976, 1772.
(6) (a) Itokawa, H.; Qiao, Y.; Takeya, K. Phytochemistry 1991, 30,
637. (b) Wu, L.; Wang, S.; Hua, H.; Li, X.; Zhu, T.; Miyase, T.; Ueno,
A. Phytochemistry 1991, 30, 1710. (c) Ho, L.-K.; Don, M.-J.; Chen, H.-
C.; Yeh, S.-F.; Chen, J.-M. J. Nat. Prod. 1996, 59, 330. (d) Gutpa, P. P.;
Srimal, R. C.; Verma, N.; Tandon, J. S. Pharmaceutical Biol. 1999, 37,
46. (e) Son, J. K.; Jung, S. J.; Jung, J. H.; Fang, Z.; Lee, C. S.; Seo, C.
S.; Moon, D. C.; Min, B. S.; Kim, M. R.; Woo, M. H. Chem. Pharm.
Bull. 2008, 56, 213. (f) Hou, B.; Wang, S. Zhongcaoyao 2000, 31, 492.
(7) Lumb, J.-P.; Trauner, D. J. Am. Chem. Soc. 2005, 127, 2870.
(8) Lumb, J.-P.; Choong, K. C.; Trauner, D. J. Am. Chem. Soc. 2008,
130, 9230.
It is possible that the yield of the final cyclization could be
improved by prior protection of the phenol in 26. Then again,
as mentioned previously, the corresponding phenoxide serves
to deactivate the ketone carbonyl to nucleophilic attack, and no
protecting group can achieve this. Moreover, given the brevity
of the route in Scheme 4, and the good yields of the preceding
steps, additional protection and deprotection steps did not
seem warranted.
(9) Sastry, M. N. V.; Claessens, S.; Habonimana, P.; De Kimpe, N. J.
Org. Chem. 2010, 75, 2274.
(10) Brimble, M. A.; Spicer, J. A. Aust. J. Chem. 1991, 44, 197.
(11) Jung, H. W.; Oh, J. S.; Lee, S. H.; Liang, J. L.; Kim, D. H.;
Rahman, A. F. M. M.; Jahng, Y. Bull. Korean Chem. Soc. 2007, 28, 1863.
(12) Xia, L.; Lee, Y. R. Org. Biomol. Chem. 2013, 11, 6097.
2492
dx.doi.org/10.1021/ol500862w | Org. Lett. 2014, 16, 2490−2493