J. C. Legeay et al. / Tetrahedron Letters 48 (2007) 1063–1068
1067
B. M.; Gougoutas, J. Z.; Schwartz, J.; Smille, K. M.;
Malley, M. F. J. Med. Chem. 1990, 33, 2629–2635.
3. Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043–1052.
4. (a) Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Bailey, T. R.;
Long, M. A.; Vescio, N.; Aldous, S.; Pevear, D. C.;
Dutko, F. J. J. Med. Chem. 1994, 37, 2421–2436; (b) Borg,
S.; Vollinga, R. C.; Labarre, M.; Payza, K.; Terenius, L.;
Luthman, K. J. Med. Chem. 1999, 42, 4331–4342.
5. Burell, G.; Evans, J. M.; Hadley, M. S.; Hicks, F.; Stemp,
G. Bioorg. Med. Chem. Lett. 1994, 4, 1285–1290.
followed by recrystallization from EtOH afforded the
desired N-3 functionalized 3,4-dihydropyrimidine-
2(1H)-ones 12(a–f) in good yields (70–81%). The struc-
ture of the new 3,4-DHPMs 12 was ascertained by
conventional techniques (1H, 13C NMR, IR) and the
purity was controlled by HRMS. As can be seen in the
results of Table 1, the target 3,4-DHPMs 12 were
synthesized in five steps from the starting ILP bound
Biginelli 3,4-DHPMs 7(a,b) in moderate to good overall
yield (33–48%).
6. Bethge, K.; Pertz, H. H.; Rehse, K. Arch. Pharm. Chem.
Life Sci. 2005, 338, 78–96.
7. Naka, T.; Kubo, K. Curr. Pharm. Dis. 1999, 5, 543–572.
8. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360–413.
9. Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1–82.
10. Toy, P. M.; Janda, K. D. Acc. Chem. Res. 2000, 33, 546–
554.
11. Lee, S. J. Chem. Soc., Chem. Commun. 2006, 1049–1063.
12. Fraga-Dubreuil, J.; Famelart, M. H.; Bazureau, J. P. Org.
Proc. Res. Dev. 2002, 6, 374–378.
In summary, new N-3 functionalized 3,4-dihydropyrim-
idine-2(1H)-ones with 1,2,4-oxadiazole as amide isostere
using ionic liquid-phase organic synthesis (IoLiPOS)
methodology has been developed. To our knowledge,
this new approach has never been reported either in
classical solution-phase reaction or with solid- or
liquid-phase supported organic synthesis. This protocol
involved the attachment of the 3,4-DHPM heterocycle
on the ILP bound acetoacetate by solventless one-pot
three-component condensation. Then, the 3,4-DHPM
intermediates were easily functionalized with 1,2,4-
oxadiazole using two convergent methods from aliphatic
carboxylic anhydrides or from aromatic carboxylic
acids. Detachment by transesterification afforded the
new N-3 functionalized 3,4-DHPMs in good overall
yields. On the basis of this example, the advantages of
the ILP technology26 are that the structure and the pur-
ity of each intermediate could be controlled by standard
spectroscopic methods (1H, 13C NMR, HRMS and IR)
after purification by washings with an appropriate sol-
vent. Owing to the high loading capacity of ILP, in
many cases the use of a large excess of reagents can be
avoided in contrast to the usual solid-phase synthesis
methods. Although a limited number of different and
representative substituents of the 1,2,4-oxadiazole
grafted on the 3,4-DHPM cores are presented here, it
is obvious that a much larger diversity can be easily
achieved. We are currently exploring the scope and
potential of this ILP protocol for the preparation of
new N-3 functionalized 3,4-DHPMs that will be much
more reliable for biological screening.
13. (a) Debdab, M.; Mongin, F.; Bazureau, J. P. Synthesis
2006, 4046–4052; (b) Legeay, J. C.; Vanden Eynde, J. J.;
Bazureau, J. P. Tetrahedron 2005, 61, 12386–12397; (c)
Hakkou, H.; Vanden Eynde, J. J.; Hamelin, J.; Bazureau,
J. P. Tetrahedron 2004, 60, 3745–3753; (d) Hakkou, H.;
Vanden Eynde, J. J.; Hamelin, J.; Bazureau, J. P. Synthesis
2004, 1793–1798; (e) Fraga-Dubreuil, J.; Bazureau, J. P.
Tetrahedron Lett. 2001, 42, 6097–6100.
14. (a) Cai, Y.; Zhang, Y.; Peng, Y.; Lu, F.; Huang, X.; Song,
G. J. Comb. Chem. 2006, 8, 636–638; (b) Huang, J. Y.; Lei,
M.; Wang, Y. G. Tetrahedron Lett. 2006, 47, 3047–3050;
(c) Sang, G.; Cai, Y.; Peng, Y. J. Comb. Chem. 2005, 7,
561–566; (d) Miao, W.; Chan, T. H. J. Org. Chem. 2005,
70, 3251–3255; (e) Yi, F.; Peng, Y.; Song, G. Tetrahedron
Lett. 2005, 46, 3931–3933; (f) de Kort, M.; Tuin, A.;
Kuiper, S.; Overkleeft, H. S.; Vander Marel, G. A.;
Buijsman, R. C. Tetrahedron Lett. 2004, 45, 2171–2175;
(g) Anjaiah, S.; Chandrasekkar, S.; Gree, R. Tetrahedron
Lett. 2004, 45, 569–571; (h) Handy, S. T.; Okello, T. L.
Tetrahedron Lett. 2003, 44, 8399–8402; (i) Miao, W.;
Chan, T. H. Org. Lett. 2003, 5, 5003–5005.
15. Legeay, J. C.; Toupet, L.; Vanden Eynde, J. J.; Bazureau,
J. P. Arkivoc 2007, 13–28.
16. (a) Bazureau, J. P.; Mongin, F.; Hamelin, J.; Texier-
Boullet, F. Microwave in Organic Synthesis, In Microwave
in Heterocyclic Chemistry; 2nd ed.; Loupy, A., Ed.; Wiley-
VCH: Weinheim, Germany, 2006; Chapter 10, pp 426–
523; (b) Besson, T.; Brain, C. Microwave Assisted Organic
Synthesis. In Heterocyclic Chemistry Using Microwave
Assisted Approaches; Tierney, J. P., Lidstro¨m, P., Eds.;
Blackwell Publishing, 2004; Chapter 3; (c) Commarmot,
R.; Didenot, R.; Gardais, J. F. Fr Demande 1985, 25, 560
529; Chem. Abstr. 1986, 105, 17442.
Acknowledgments
`
One of us (J.C.L.) thanks the ‘Ministere de la Recherche
´
et de l’Enseignement Superieur’ for a research fellow-
17. Legeay, J. C.; Goujon, J. Y.; Toupet, L.; Vanden Eynde, J.
J.; Bazureau, J. P. J. Comb. Chem. 2006, 8, 829–833.
18. (a) Wang, Y.; Miller, R. L.; Sauer, D. R.; Djuric, S. W.
Org. Lett. 2005, 7, 925–928; (b) Santagada, V.; Frecentese,
F.; Perissutti, E.; Cirillo, D.; Terraciano, S.; Caliendo, S.
Bioorg. Med. Chem. Lett. 2004, 14, 4491–4493.
´
ship. We also thank Dr Pierre Guenot (CRMPO) for
the mass spectrometry measurements and Merck Euro-
lab Prolabo (Fr.) for providing the Synthewave 402Ò
apparatus.
19. Eloy, F. R. L. Chem. Rev. 1962, 62, 155–183.
20. Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K.
L.; Rittle, K. E.; Gilbert, K. F.; Steele, T. G.; Hommick,
C. F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss,
D.; Broten, T. P.; Schorn, T. W.; Chang, R. S. L.;
O’Malley, S. S.; Olah, T. V.; Ellis, J. D.; Barrish, A.;
Kassahun, K.; Leppert, P.; Nagaratham, D.; Forray, C. J.
Med. Chem. 2000, 43, 2703–2718.
References and notes
1. (a) Janis, R. A.; Triggle, D. J. J. Med. Chem. 1983, 26,
775–785; (b) Loev, B.; Goodman, M. M.; Snader, K. M.;
Tedeschi, R.; Macko, E. J. Med. Chem. 1974, 17, 956–965.
2. (a) Atwal, K. S.; Swanson, B. M.; Unger, S. E.; Floyd, D.
M.; Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med.
Chem. 1991, 34, 806–811; (b) Atwal, K. S.; Rovnyak, G.
C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson,
´
21. (a) Hamze, A.; Hernadez, J. F.; Fulerand, P.; Martinez, J.
J. Org. Chem. 2003, 68, 7316–7321; (b) Borg, S.; Vollinga,