Organic Letters
Letter
Key Step. Org. Lett. 2018, 20, 2876−2879. (b) Huang, Z.; Huang, J.;
Qu, Y.; Zhang, W.; Gong, J.; Yang, Z. Total Syntheses of Crinipellins
Enabled by Cobalt-Mediated and Palladium-Catalyzed Intramolecular
Pauson-Khand Reactions. Angew. Chem., Int. Ed. 2018, 57, 8744−
3-Cyclopentenones and 4-Alkylidene-3,4-dihydro-2H-pyrans. Org.
Lett. 2006, 8, 3153−3156. (b) Yoshimatsu, M.; Matsuura, Y.;
Gotoh, K. A Novel 3,4-Bis(sulfenyl)- or 4-Selenenyl-3-sulfenylpenta-
2,4-dienylation of Aldehydes Using 4-Ethoxy-1,2-bis(sulfenyl)- or 1-
Selenenyl-2-sulfenyl-buta-1,3-dienyl Lithiums. Chem. Pharm. Bull.
2003, 51, 1405−1412. (c) Kuroda, C.; Koshio, H. New Cyclization
Reaction of 2-(Trimethylsilylmethyl)pentadienal. Synthesis of
Spiro[4.5]decane Ring System. Chem. Lett. 2000, 29, 962−963.
(20) (a) Riveira, M. J.; Mischne, M. P. One-pot Organocatalytic
Tandem Aldol/Polycyclization Reactions between 1,3-Dicarbonyl
Compounds and α,β,γ,δ-Unsaturated Aldehydes for the Straightfor-
ward Assembly of Cyclopenta[b]furan-type Derivatives: New Insight
into the Knoevenagel Reaction. Chem. - Eur. J. 2012, 18, 2382−2388.
8
748.
12) (a) Magnus, P.; Freund, W. A.; Moorhead, E. J.; Rainey, T.
(
Formal Synthesis of (±)-Methyl Rocaglate Using an Unprecedented
Acetyl Bromide Mediated Nazarov Reaction. J. Am. Chem. Soc. 2012,
1
34, 6140−6142. (b) Malona, J. A.; Cariou, K.; Frontier, A. J.
Nazarov Cyclization Initiated by Peracid Oxidation: The Total
Synthesis of (±)-Rocaglamide. J. Am. Chem. Soc. 2009, 131, 7560−
7
561. (c) He, W.; Huang, J.; Sun, X.; Frontier, A. J. Total Synthesis of
(
±)-Merrilactone A. J. Am. Chem. Soc. 2008, 130, 300−308.
(
d) Liang, G.; Xu, Y.; Seiple, I. B.; Trauner, D. Synthesis of
(b) Riveira, M. J.; Gayathri, C.; Navarro-Vazquez, A.; Tsarevsky, N.
́
Taiwaniaquinoids via Nazarov Triflation. J. Am. Chem. Soc. 2006, 128,
1022−11023.
13) For reviews on the Nazarov reaction, see: (a) Wenz, D. R.; de
V.; Gil, R. R.; Mischne, M. P. Unprecedented Stereoselective
1
(
Synthesis of Cyclopenta[b]benzofuran Derivatives and Their
1
3
Characterisation Assisted by Aligned Media NMR and C Chemical
Shift ab initio Predictions. Org. Biomol. Chem. 2011, 9, 3170−3175.
(21) For some previous syntheses, see: (a) Hayashi, M.; Shibuya,
M.; Iwabuchi, Y. Oxidative Conversion of Silyl Enol Ethers to α,β-
Unsaturated Ketones Employing Oxoammonium Salts. Org. Lett.
2012, 14, 154−157. (b) Takeishi, K.; Sugishima, K.; Sasaki, K.;
Tanaka, K. Rhodium-Catalyzed Intramolecular Hydroacylation of 5-
and 6-Alkynals: Convenient Synthesis of α-Alkylidenecycloalkanones
and Cycloalkenones. Chem. - Eur. J. 2004, 10, 5681−5688.
(c) Mathew, J.; Alink, B. A Novel Route to Substituted Cyclopent-
2-en-1-one; Application to the Synthesis of cis-Jasmone and
Dihydrojasmone. J. Chem. Soc., Chem. Commun. 1990, 684−686.
(d) Erickson, J. L. E.; Collins, F. E., Jr. A Novel Synthesis of
Dihydrojasmone. J. Org. Chem. 1965, 30, 1050−1052.
Alaniz, J. R. The Nazarov Cyclization: A Valuable Method to
Synthesize Fully Substituted Carbon Stereocenters. Eur. J. Org. Chem.
2
015, 2015, 23−37. (b) West, F. G.; Scadeng, O.; Wu, Y.-K.;
Fradette, R. J.; Joy, S. The Nazarov Cyclization. In Comprehensive
Organic Synthesis, 2nd ed.; Molander, G. A., Knochel, P., Eds.;
Elsevier: Oxford, 2014; Vol. 5, pp 827−866. (c) Vaidya, T.;
Eisenberg, R.; Frontier, A. J. Catalytic Nazarov Cyclization: The
State of the Art. ChemCatChem 2011, 3, 1531−1548. (d) Tius, M. A.
Some New Nazarov Chemistry. Eur. J. Org. Chem. 2005, 2005, 2193−
2
206. (e) Pellissier, H. Recent Developments in the Nazarov Process.
Tetrahedron 2005, 61, 6479−6517. (f) Habermas, K. L.; Denmark, S.
E.; Jones, T. K. The Nazarov Cyclization. In Organic Reactions;
Paquette, L. A., Ed.; John Wiley & Sons Inc.: New York, 1994; Vol.
4
(
(
5, pp 1−158.
14) For reviews on variants of the traditional Nazarov reaction, see:
a) Sheikh, N. S. 4π Electrocyclisation in Domino Processes:
(22) Pauson, P. L.; Khand, I. U. Uses of Cobalt-carbonyl Acetylene
Complexes in Organic Synthesis. Ann. N. Y. Acad. Sci. 1977, 295, 2−
14.
Contemporary Trends and Synthetic Applications Towards Natural
Products. Org. Biomol. Chem. 2015, 13, 10774−10796. (b) Di Grandi,
M. J. Nazarov-like Cyclization Reactions. Org. Biomol. Chem. 2014,
(23) Stetter, H.; Lorenz, G. Addition von Aldehyden an aktivierte
̈
Doppelbindungen, XXXV. α-Ketosauren als Aquivalent fur Aldehyde
̈
̈
in der Thiazoliumsalz-katalysierten Addition. Chem. Ber. 1985, 118,
1115−1125.
1
2, 5331−5345. (c) Tius, M. A. Allene Ether Nazarov Cyclization.
Chem. Soc. Rev. 2014, 43, 2979−3002. (d) Spencer, W. T., III; Vaidya,
T.; Frontier, A. J. Beyond the Divinyl Ketone: Innovations in the
Generation and Nazarov Cyclization of Pentadienyl Cation
Intermediates. Eur. J. Org. Chem. 2013, 2013, 3621−3633.
(24) Howell, J. A. S.; O’Leary, P. J.; Yates, P. C. Acyclic O- and N-
Substituted Pentadienyl Cations: Structural Characterisation, Cyclisa-
tion and Computational Results. Tetrahedron 1995, 51, 7231−7246.
(25) Takahashi, T.; Xi, Z.; Nishihara, Y.; Huo, S.; Kasai, K.; Aoyagi,
K.; Denisov, V.; Negishi, E.-I. Convenient Preparative Method of α,β-
Disubstituted Cyclopentenone by Zirconium Promoted Intermolec-
ular Coupling of an Alkyne, EtMgBr (or Ethylene) and CO.
Tetrahedron 1997, 53, 9123−9134.
(26) (a) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi,
A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016,
116, 2478−2601. For recent work on catalysis by molecular iodine,
see: (b) Breugst, M.; von der Heiden, D. Mechanisms in Iodine
Catalysis. Chem. - Eur. J. 2018, 24, 9187−9199. (c) Breugst, M.;
Detmar, E.; von der Heiden, D. Origin of the Catalytic Effects of
Molecular Iodine: A Computational Analysis. ACS Catal. 2016, 6,
3203−3212.
(
15) Miller, A. K.; Banghart, M. R.; Beaudry, C. M.; Suh, J. M.;
Trauner, D. Development of Novel Lewis Acid Catalyzed Cyclo-
isomerizations: Synthesis of Bicyclo[3.1.0]hexenes and Cyclopente-
nones. Tetrahedron 2003, 59, 8919−8930.
(
16) For a review on iso-Nazarov reactions and related processes,
see: Riveira, M. J.; Marsili, L. A.; Mischne, M. P. The iso-Nazarov
Reaction. Org. Biomol. Chem. 2017, 15, 9255−9274.
(
17) The reaction was first discovered for the case of linearly
conjugated ketones, see: Denmark, S. E.; Hite, G. A. Silicon-directed
Nazarov Cyclizations. Part VI. The Anomalous Cyclization of Vinyl
Dienyl Ketones. Helv. Chim. Acta 1988, 71, 195−208.
(
18) Unlike the pure version of the reaction, domino processes
involving iso-Nazarov reactions have been more numerous. For some
examples, see: (a) Riveira, M. J.; Marcarino, M. O.; La-Venia, A.
Multicomponent Domino Synthesis of Cyclopenta[b]furan-2-ones.
Org. Lett. 2018, 20, 4000−4004. (b) Marques, A.-S.; Coeffard, V.;
Chataigner, I.; Vincent, G.; Moreau, X. Iron-Mediated Domino
Interrupted Iso-Nazarov/Dearomative (3 + 2)-Cycloaddition of
Electrophilic Indoles. Org. Lett. 2016, 18, 5296−5299. (c) Lin, C.-
C.; Teng, T.-M.; Tsai, C.-C.; Liao, H.-Y.; Liu, R.-S. Gold-Catalyzed
Deoxygenative Nazarov Cyclization of 2,4-Dien-1-als for Stereo-
selective Synthesis of Highly Substituted Cyclopentenes. J. Am. Chem.
Soc. 2008, 130, 16417−16423. (d) Pujanauski, B. G.; Prasad, B. A. B.;
Sarpong, R. Pt-Catalyzed Tandem Epoxide Fragmentation/Pentannu-
lation of Propargylic Esters. J. Am. Chem. Soc. 2006, 128, 6786−6787.
For a review, see ref 16.
(27) For example, an iodine-mediated diaza-Nazarov cyclization was
recently developed. Aegurla, B.; Peddinti, R. K. The Diaza-Nazarov
Cyclization Involving a 2,3-Diaza-pentadienyl Cation for the Synthesis
of Polysubstituted Pyrazoles. Org. Biomol. Chem. 2017, 15, 9643−
9652.
(28) Hepperle, S. S.; Li, Q.; East, A. L. L. Mechanism of Cis/Trans
Equilibration of Alkenes via Iodine Catalysis. J. Phys. Chem. A 2005,
109, 10975−10981.
(29) For computational studies by de Lera and co-workers on
reactions involving hydroxy-pentadienyl cations as intermediates, e.g.
the Nazarov reaction and the Piancatelli rearrangement, see: (a) Nieto
́ ́
Faza, O.; Silva Lopez, C.; Alvarez, R.; de Lera, A. R. Theoretical Study
́
of the Electrocyclic Ring Closure of Hydroxypentadienyl Cations.
Chem. - Eur. J. 2004, 10, 4324−4333. For other concerted
cycloisomerizations involving a 1,2-H shift as transition states, see:
(b) Michelet, B.; Tang, S.; Thiery, G.; Monot, J.; Li, H.; Guillot, R.;
(
19) (a) Lo, C.-Y.; Lin, C.-C.; Cheng, H.-M.; Liu, R.-S. Metal-
Catalyzed Chemoselective Cycloisomerization of cis-2,4-Dien-1-als to
E
Org. Lett. XXXX, XXX, XXX−XXX