It should be noted that in site 1 the deuteration influences the S –S interval and the shape of the
2
1
−
1
S ← S quasiline. The changes of the S –S interval of 788, 798, and 783 cm in H Phc, D Phc, and
2
0
2
1
2
2
−
1
H Phc-d , respectively, exceed the experimental error (2–3 cm for intense quasilines). These changes can
2
16
be explained only by the fact that the contour of the given quasiline is the envelope of forbidden vibronic
transitions and therefore the observed S –S interval is not a true one.
2
1
In the fluorescence excitation spectra, the region in which one can await the manifestation of defor-
mation vibrations of B1g symmetry with participation of the central N—H bonds (for example, by analogy
with the data for tetrabenzoporphin [14, 15] and tetraazaporphin [16]) is complex and difficult to analyze
because of the vibronic interactions considered above. Nevertheless, for different sites we managed to reveal
−
1
three frequencies of vibrations in the S state that disappear in N-deuteration of H Phc: 905 and 1205 cm
1
2
site 1) and 1110 cm−1 (site 2). The 869, 988, and 1006 cm frequencies appear in this case (the data for
site 1). For comparison, the 907, 1020, and 1228 cm frequencies in tetrabenzoporphin disappear in the
ground state S and the 864, 993, and 1053 cm frequencies appear. Moreover, vibrational frequencies 1361
and 1373 cm of the state S of site 1 were revealed, which disappear in deuteration of the center and may
correspond to the above-noted frequency of the ground state 1357 cm (site 2).
This work was carried out with financial support from the Belarusian Republic Basic Research Foun-
dation (project F98-227).
−1
(
−
1
−
1
0
−
1
1
−
1
REFERENCES
1
2
3
4
.
.
.
.
F. F. Litvin and R. I. Personov, Dokl. Akad. Nauk SSSR, 136, 798−800 (1961).
R. I. Personov, Opt. Spektrosk., 15, 61−71 (1963).
O. N. Korotaev and R. I. Personov, Opt. Spektrosk., 37, 886−891 (1974).
V. N. Kotlo, K. N. Solov’ev, S. F. Shkirman, and I. E. Zalesskii, Vestsi Akad. Navuk BSSR, Ser. Fiz.-
Mat. Navuk, No. 3, 99−107 (1974).
′
5.
6.
7.
8.
9.
A. A. Gorokhovskii, R. K. Kaarli, and L. A. Rebane, Pis’ma Zh. Eksp. Teor. Fiz., 20, 474−479 (1974).
A. A. Gorokhovskii, Opt. Spektrosk., 40, 477−482 (1976).
T.-H. Huang, K. E. Rieckhoff, and E. M. Voigt, J. Chem. Phys., 77, 3424−3441 (1982).
′
J. Hala, I. Pelant, L. Parma, and K. Vacek, Czech. J. Phys., B32, 705−710 (1982).
W.-H. Chen, K. E. Rieckhoff, and E. M. Voigt, Spectrochim. Acta, 46A, 1601−1613 (1990).
1
1
1
0. D. Grime and I. M. Ward, Trans. Faraday Soc., 54, 959−971 (1958).
1. S. M. Arabei, K. N. Solov’ev, and Yu. I. Tatul’chenkov, Opt. Spektrosk., 73, 686−693 (1992).
2. K. N. Solov’ev, L. L. Gladkov, A. S. Starukhin, and S. F. Shkirman, in: Spectroscopy of Porphyrins:
Vibrational States [in Russian], Minsk (1985), pp. 79−80.
1
1
1
1
3. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules [Russian transla-
tion], Moscow (1969)
4. S. F. Shkirman L. L. Gladkov, V. K. Konstantinova, and K. N. Solov’ev, Spectr. Lett., 31(8),
1
749−1760 (1998).
5. S. F. Shkirman L. L. Gladkov, V. K. Konstantinova, and K. N. Solov’ev, Zh. Prikl. Spektrosk., 66,
75−382 (1999).
6. L. L. Gladkov, S. F. Shkirman, V. K. Konstantinova, and K. N. Solov’ev, Zh. Prikl. Spektrosk., 67,
51−556 (2000).
3
5
414