the residue by column chromatography (10% EtOAc in
light petroleum) gave a yellow oil, cycloadduct 43 (22 mg,
42%); Rf 0.45 (20% Et2O in light petroleum); [α]2D4 Ϫ23.1 (c 1.12
in CHCl3); νmax/cmϪ1 2931s, 2858s, 1763s, 1473m, 1260s, 1097s
and 839s; δH(400 MHz) 4.81 (1 H, s, CH), 4.70 (1 H, d, J 7,
Duhamel (Rouen) is thanked for additional information con-
cerning the synthesis of lactone diol 37.
References
CHC᎐O), 4.41–4.29 (2 H, m, CO CH Me), 3.91 (1 H, d, J 7,
᎐
2
2
1 Statistical Abstract of the United States: 1994, 114th edn., U.S.
Bureau of Census, Washington, DC, 1994, Tables 125 and 130.
2 M. J. Dawson, J. E. Farthing, P. S. Marshall, R. F. Middleton,
M. J. O’Neill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor,
H. G. Wildman, A. D. Buss, D. Langley and M. V. Hayes,
J. Antibiot., 1992, 45, 639; P. J. Sidebottom, R. M. Highcock,
S. J. Lane, P. A. Procopiou and N. S. Watson, J. Antibiot., 1992, 45,
648.
CH), 3.80 (3 H, s, CO2Me), 1.68 (3 H, s, Me), 1.34 (3 H, t,
J 7, Me), 0.99 (9 H, s, SiCMe3), 0.98 (9 H, s, Si CMe3), 0.20 (6
H, s, 2 × SiMe,), 0.10 (3 H, s, SiMe) and 0.05 (3 H, s, SiMe);
1H NOE experiments: irradiation δ 4.81 saw enhancement at
3.91 (1.0%), at 1.68 (1.8%) and at 1.34 (1.0%); irradiation at
δ 4.70 saw enhancement at 3.91 (3.2%); irradiation at δ 3.91 saw
enhancement at 4.81 (1.0%), 4.70 (4.2%) and at 1.68 (2.5%);
irradiation at δ 1.68 saw enhancement at 4.81 (4.1%), 4.70
(3.0%), at 3.91 (4.5%), at 0.99 (6.5%) and at 0.20 (9%); δC(100
MHz) 203.2 (C, quat.), 167.1 (CO2Me, quat.), 162.6 (CO2Et,
quat.), 114.6 (C, quat.), 88.5 (C, quat.), 79.4 (CH), 78.9
(CH), 78.0 (CH), 63.0 (CH2), 52.7 (CO2Me), 26.1 (CMe3), 25.9
(CMe3), 21.1 (C-5 Me), 18.4 (CMe3), 17.9 (CMe3), 13.8 (Me),
Ϫ3.5 (SiMe), Ϫ3.6 (SiMe), Ϫ4.1 (SiMe) and Ϫ4.9 (SiMe); m/z
(CI) 550 (M ϩ NH4ϩ, 18%), 533 (M ϩ Hϩ, 5%), 313 (25), 132
(65) and 91 (100) (Found: M ϩ Hϩ, 533.2594. C24H45Si2O9
requires M, 533.2602).
3 K. Hasumi, K. Tachikawa, K. Sakai, S. Murakawa, N. Yoshikawa,
S. Kumazawa and A. Endo, J. Antibiot., 1993, 46, 689.
4 J. D. Bergstrom, M. M. Kurtz, D. J. Rew, A. M. Amend,
J. K. Karkas, R. G. Bostedor, V. S. Bansal, C. Dufresne, F. L.
VanMiddlesworth, O. D. Hensens, J. M. Liesch, D. L. Zink,
K. E. Wilson, J. C. Onishi, J. A. Milligan, M. B. Kurtz, G. Bills,
K. F. Bartizal, W. A. Rozdilsky, G. K. Abruzzo, L. Kaplan, M. N.
Omstead, R. G. Jenkins, L. Huang, M. S. Meinz, L. Quinn, R. W.
Burg, Y. L. Kong, S. Mochales, M. Mojena, I. Martin, F. Palaez,
M. T. Diez and A. W. Alberts, Proc. Natl. Acad. Sci. U.S.A.,
1993, 90, 80; K. E. Wilson, R. M. Burk, T. Biftu, R. G. Ball
and K. Hoogsteen, J. Org. Chem., 1992, 57, 7151; O. D. Hensens,
C. Dufresne, J. M. Liesch, D. L. Zink, R. A. Reamer and
F. VanMiddlesworth, Tetrahedron Lett., 1993, 34, 399.
5 Reviews: K. C. Nicolaou and A. Nadin, Angew. Chem., Int. Ed.
Engl., 1996, 35, 1622; U. Koert, Angew. Chem., Int. Ed. Engl., 1995,
34, 773; P. A. Procopiou and N. S. Watson, Prog. Med. Chem.,
1996, 33, 331; J. D. Bergstrom, C. Dufresne, G. F. Bills, M. Nallin-
Omstead and K. Byrne, Annu. Rev. Microbiol., 1995, 49, 607.
6 Preliminary communication: D. M. Hodgson, J. M. Bailey and
T. Harrison, Tetrahedron Lett., 1996, 37, 4623.
7 W. M. Blows, G. Foster, S. J. Lane, D. Noble, J. E. Piercey,
P. J. Sidebottom and G. Webb, J. Antibiot., 1994, 47, 740.
8 Review: A. Padwa and M. D. Weingarten, Chem. Rev., 1996, 96,
223.
9 A. Padwa, G. E. Fryxell and L. Zhi, J. Am. Chem. Soc., 1990, 112,
3100.
10 A. Padwa, Y. S. Kulkarni and Z. Zhang, J. Org. Chem., 1990, 55,
4144.
11 C. D. Harries, Chem. Ber., 1903, 36, 1934.
12 D. W. Brooks, L. D.-L. Lu and S. Masamune, Angew. Chem., Int.
Ed. Engl., 1979, 18, 72.
13 C. J. Moody and R. J. Taylor, J. Chem. Soc., Perkin Trans. 1, 1989,
721.
14 A. Padwa, D. C. Dean, M. H. Osterhout, L. Precedo and M. A.
Semones, J. Org. Chem., 1994, 59, 5347.
15 J. M. Hook, Synth. Commun., 1984, 14, 83.
16 N. Subasinghe, M. Schulte, M. Y.-M. Chan, R. J. Roon, J. F.
Koerner and R. L. Johnson, J. Med. Chem., 1990, 33, 2734; J. Blake,
J. R. Tretter, G. J. Juhast, W. Bontherone and H. Rapoport, J. Am.
Chem. Soc., 1966, 88, 4061.
17 H. Koyama, R. G. Ball and G. D. Berger, Tetrahedron Lett., 1994,
35, 9185.
18 I. Fleming, Frontier Orbitals and Organic Chemical Reactions,
Wiley, Chichester, 1976, pp. 86–181. See, however: J. I. García,
J. A. Mayoral and L. Salvatella, Acc. Chem. Res., in the press.
19 K. N. Houk, J. Sims, R. E. Duke, R. W. Strozier and J. K. George,
J. Am. Chem. Soc., 1973, 95, 7287; K. N. Houk, J. Sims, C. R. Watts
and L. J. Luskus, J. Am. Chem. Soc., 1973, 95, 7301. See also:
K. N. Houk, Acc. Chem. Res., 1975, 8, 361.
Ethyl (1R,3R,4R,5R,7S)-7-tert-butoxycarbonyl-3,4-bis(tert-
butyldimethylsilyloxy)-5-methyl-2-oxo-6,8-dioxabicyclo[3.2.1]-
octane-1-carboxylate 44
Rh2(OAc)4 (cat.) was added to a solution of diazoester 40
(64 mg, 0.13 mmol) and freshly distilled tert-butyl glyoxylate16
(26 mg, 0.20 mmol) in toluene (1 cm3) at 110 ЊC. After 2.5 h the
reaction was cooled, diluted with Et2O (1 cm3), filtered through
Celite and evaporated under reduced pressure. Purification of
the residue by column chromatography (10% EtOAc in
light petroleum) gave a clear oil, cycloadduct 44 (43 mg, 58%);
Rf 0.42 (10% Et2O in light petroleum); [α]2D5 Ϫ20.2 (c 1.0 in
CHCl3); νmax/cmϪ1 2931s, 2858s, 1754s, 1473m, 1257s, 1097s and
839s; δH(400 MHz, C6D6) 5.01 (1 H, s, CH), 4.88 (1 H, d, J 7.5,
CH), 4.35 (1 H, d, J 7.5, CH), 3.99–3.80 (2 H, m, CO2CH2),
1.73 (3 H, s, Me), 1.45 (9 H, s, CMe3), 1.17 (9 H, s, CMe3), 1.02
(9 H, s, CMe3), 0.99 (3 H, t, J 7, Me), 0.19 (3 H, s, SiMe), 0.18
(3 H, s, SiMe), 0.17 (3 H, s, SiMe) and 0.09 (3 H, s, SiMe); 1H
NMR NOE experiments: irradiation at δ 5.01 saw enhance-
ments at 4.35 (1.4%), at 1.73 (1.0%) and at 1.45 (1.0%); irradi-
ation at δ 4.88 saw enhancements at 4.35 (4.0%) and at 0.19
(6.4%); irradiation at δ 4.35 saw enhancements at 5.01 (1.0%),
at 4.88 (3.0%), at 1.73 (1.8%), at 1.45 (2.2%), at 0.19 (3.2%) and
at 0.09 (4.3%); δC(100 MHz, C6D6) 203.2 (C, quat.), 165.7
(C, quat.), 162.9 (C, quat.), 114.6 (C, quat.), 89.3 (C, quat.),
82.5 (C, quat.), 82.5 (CH), 80.2 (CH), 78.8 (CH), 62.3 (CH2),
27.5 (CMe3), 26.2 (CMe3), 25.9 (CMe3), 21.2 (C(5)Me), 18.4 (C,
quat.), 17.8 (C, quat.), 13.4 (Me), Ϫ3.6 (SiMe), Ϫ3.7 (SiMe),
ϩ
Ϫ4.5 (SiMe) and Ϫ4.9 (SiMe); m/z (CI) 592 (M ϩ NH4
,
18%), 443 (10) and 313 (100) (Found: M ϩ NH4ϩ, 592.3329.
C27H54NO9Si2 requires M, 592.3337).
20 E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of
Organic Compounds, Wiley, Chichester, 1994, p. 619; O. Cervinka,
A. Svatos, P. Trska and P. Pech, Collect. Czech. Chem. Commun.,
1990, 55, 230.
21 S. Kobayashi, Y. Tsuchiya and T. Mukaiyama, Chem. Lett., 1991,
537.
22 M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B. Smith, D. E.
Vehling and S. L. Schreiber, J. Am. Chem. Soc., 1990, 112, 5583.
23 R. C. Larock, Comprehensive Organic Transformations, VCH, New
York, 1989, pp. 993–994.
Acknowledgements
We thank the EPSRC for a Research Grant (GR/J84267) and
an Earmarked Studentship and the EPSRC and Merck Sharp
& Dohme for converting the Studentship into a CASE award
(to J. M. B.). We also thank Dr R. Mortishire-Smith (Merck
Sharp & Dohme) and Dr T. D. W. Claridge (Oxford) for expert
assistance with the determination of stereochemistry using
NMR, the EPSRC National Mass Spectrometry Service Centre
for mass spectra and Zeneca (Strategic Research Fund) and
Pfizer for additional financial support. We also thank A. W.
Johans for his assistance with the crystallographic investi-
gations and the University of Reading together with the
EPSRC for funds for an Image Plate System. Professor L.
24 E. M. Carreira and J. Du Bois, Tetrahedron Lett., 1995, 36, 1209;
ref. 9.
25 J. E. Baldwin, G. A. Höfle and O. W. Lever Jr., J. Am. Chem. Soc.,
1974, 96, 7125; U. Schöllkopf and P. Hänßle, Liebigs Ann. Chem.,
1972, 763, 208.
26 S. Caron, A. I. McDonald and C. H. Heathcock, J. Org. Chem.,
1995, 60, 2780.
3442
J. Chem. Soc., Perkin Trans. 1, 2000, 3432–3443