7
604
S. Knapp, B. A. Kirk / Tetrahedron Letters 44 (2003) 7601–7605
2
. Marzabadi, C. H.; Franck, R. W. Tetrahedron 2000, 56,
385–8417.
ity. See: Schulze, O.; Bruns, S.; Voss, J.; Adiwidjaja, G.
Carbohydr. Res. 2000, 329, 781–790.
8
3
. For recent theoretical studies, see: B e´ rces, A.; Enright,
G.; Nukada, T.; Whitfield, D. M. J. Am. Chem. Soc.
27. Stretching frequencies of thin film samples of 2, 12, and
13 were measured by FT-IR and calibrated against the
−
1
2
001, 123, 5460–5464 and references cited therein.
polystyrene standard at 1601 cm .
4
5
6
. An example of glycosylation by a 2-thio-S-benzoyl donor
has been reported. See: Thiem, J.; J u¨ rgens, H.-J.; Paulsen,
H. Chem. Ber. 1977, 110, 2834–2851.
. The synthesis of 2 as part of an anomeric mixture has
been reported. See: Ardegger, E.; Sch u¨ ep, W. Helv. Chim.
Acta 1970, 53, 951–959.
28. The bond lengths listed for 12 are taken from its crystal
structure. See: Jones, P. G.; Sheldrick, G. M.; Kirby, A.
J.; Glenn, R. Z. Kristallogr. 1982, 161, 245–251.
2
3
9. Charton, M. Prog. Phys. Org. Chem. 1981, 13, 119–251.
0. The bond lengths estimated for 13 are based on crystallo-
graphic analysis of the closely related N-(2-acetamido-
3,4,6-tri-O-acetyl-2-deoxy-b-D-glucopyranosyl)pyridinium
. For the one step synthesis of 1 by acetylation of
D-
chloride. See: Dmochowska, B.; Bednarczyk, D.;
Nowacki, A.; Konitz, A.; Wojnowski, W.; Wisniewski, A.
Carbohydr. Res. 2000, 329, 703–707 and are typical values
for acetamides.
mannopyranose, see: Deferrari, J. O.; Gros, E. G.; Mas-
tronardi, I. O. Carbohydr. Res. 1967, 4, 432–434.
. Pavliak, V.; Kov a´ c, P. Carbohydr. Res. 1991, 210, 333–
7
8
9
3
37.
3
1. Crich, D.; Sun, S. J. Am Chem. Soc. 1999, 119, 11217–
. Knapp, S.; Naughton, A. B. J.; Jaramillo, C.; Pipik, B. J.
Org. Chem. 1992, 57, 7328–7334.
. Verduyn, R.; Douwes, M.; van der Klein, P. A. M.;
M o¨ singer, E. M.; van der Marel, G. A.; van Boom, J. H.
Tetrahedron 1993, 49, 7301–7316.
1
1223.
2. Crich, D.; Dai, Z.; Gastaldi, S. J. Org. Chem. 1999, 64,
224–5229.
3
5
3
3
3. Love, K. R.; Seeberger, P. H. Synthesis 2001, 317–322.
4. Dudley, T. J.; Smoliakova, I. P.; Hoffmann, M. R. J.
Org. Chem. 1999, 64, 1247–1253.
1
1
1
1
1
1
0. Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 1999,
21, 3541–3542.
1. Chong, P. Y.; Roush, W. R. Org. Lett. 2002, 4, 4523–
526.
2. Elhalabi, J.; Rice, K. G. Carbohydr. Res. 2001, 335,
59–165.
3. Banoub, J.; Boulanger, P.; Lafont, D. Chem. Rev. 1992,
2, 1167–1195.
4. Ogawa, T.; Beppee, K.; Nakabayashi, S. Carbohydr. Res.
981, 93, C6–C9.
5. J u¨ nnemann, J.; Lundt, I.; Thiem, J. Liebigs Ann. Chem.
991, 759–764. The spectrum of 11 reported herein inad-
1
3
3
3
3
3
5. Johnston, B. D.; Pinto, B. M. Carbohydr. Res. 1998, 310,
17–25.
4
6. Andrews, J. S.; Johnston, B. D.; Pinto, B. M. Carbohydr.
Res. 1998, 310, 27–33.
7. Nitz, M.; Bundle, D. R. J. Org. Chem. 2001, 66, 8411–
1
8
423.
8. Knapp, S.; Malolanarasimhan, K. Org. Lett. 1999, 1,
11–613.
9. Characterization of new compounds. Compound 2: mp
9
6
1
1
1
17.5–118.5°C; H NMR [500 MHz, CDCl , l (multipl.,
3
1
J in Hz, integr.)] 5.79 (d, 9.5, 1H), 5.27 (dd, 9.0, 11.5,
vertently lists H-5% at 5.57 instead of 3.57 ppm.
1
2
1
H), 5.05 (t, 10, 1H), 4.28 (dd, 4.0, 12.5, 1H), 4.06 (dd,
.0, 12.5, 1H), 3.81 (ddd, 2.0, 4.0, 10.0, 1H), 3.69 (dd, 9.5,
1.5, 1H), 2.27 (s), 2.02 (s), 1.98 (s), 1.95 (s); C NMR
1
1
6. Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 2723–2726.
7. Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-
Reid, B. J. Am. Chem. Soc. 1988, 110, 5583–5584.
13
(
125 MHz, CDCl , l): 192.25, 170.59, 169.90, 169.42,
3
1
8. Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503–
1
2
68.74, 92.02, 72.55, 70.98, 68.81, 61.53, 47.07, 30.65,
1
531.
9. Activation of anomeric acetates such as 1,2,3,4,6-tetra-O-
-glucopyranose (12) with trimethylsilyl triflate
+
0.68 (2 C’s), 20.53, 20.48; LC–MS m/z 429.0 MNa .
1
1
Compound 7: colorless oil; H NMR 7.94 (d, 7.0, 2H),
acetyl-b-
D
7
7
6
5
4
3
3
1
1
6
2
.90 (d, 7.0, 2H), 7.82 (d, 7.5, 2H), 7.49 (app q, 7.5, 2H),
.39 (t, 7.5, 1H), 7.35 (app q, 7.5, 4H), 7.25 (t, 7.5, 2H),
.14 (t, 9.5, 1H), 5.48 (t, 10.0, 1H), 5.30 (dd, 11.5, 9, 1H),
.23–5.28 (m, 2H), 5.05 (t, 9.5, 1H), 4.73 (d, 9.0, 1H),
.26–4.30 (m, 2H), 4.05–4.11 (m, 2H), 3.71–3.76 (m, 2H),
.61 (dd, 9.0, 11, 1H), 3.50 (s, 3H), 2.36 (s, 3H), 2.04 (s,
typically takes place at room temperature. For example,
see: Rodriguez, E. B.; Stick, R. V. Aust. J. Chem. 1990,
4
3, 665–679.
0. For example, comparable formation of oxazolinium ion
from 2-acetamido-2-deoxy-1,3,4,6-tetra-O-acetyl-b-
2
D
-
glucopyranose (13) with trimethylsilyl triflate as the acti-
vator required 30 min at 50°C. See: Nakabayashi, S.;
Warren, C. D.; Jeanloz, R. W. Carbohydr. Res. 1986, 150,
C7–C10.
13
H), 2.03 (s, 3H), 2.02 (s, 3H); C NMR 133.03, 129.87,
29.77, 129.60, 129.22, 129.01, 128.91, 128.43, 128.37,
28.21, 101.15, 96.84, 71.94, 71.63, 71.03, 70.50, 69.48,
9.36, 68.62, 68.30, 62.00, 55.54, 48.39, 30.63, 20.63,
2
2
2
2
2
2
1. Kreuzer, M.; Thiem, J. Carbohydr. Res. 1986, 149, 347–
+
0.55; LC–MS m/z 875.0 MNa . Compound 8: colorless
1
3
61.
oil; H NMR 7.21–7.39 (m, 15H), 4.90–4.98 (m, 3H), 4.74
2. Banoub, J.; Boulanger, P.; Potier, M.; Descotes, G. Tet-
rahedron Lett. 1986, 35, 4145–4148.
3. Sznaidman, M. L.; Johnson, S. C.; Crasto, C.; Hecht, S.
M. J. Org. Chem. 1995, 60, 3942–3943.
4. Werner, R. M.; Barwick, M.; Davis, J. T. Tetrahedron
Lett. 1995, 36, 7395–7398.
5. Knapp, S.; Gibson, F. S.; Choe, Y. H. Tetrahedron Lett.
(
d, 11.5, 1H), 4.70 (d, 12.5, 1H), 4.69 (d, 12, 1H), 4.56 (d,
12, 1H), 4.55 (d, 3.5, 1H), 4.48 (d, 9.0, 1H), 4.39 (d, 12.0,
1H), 4.10 (dd, 4.5, 12, 1H), 3.91 (t, 10, 1H), 3.86 (dd, 12,
2.5, 1H), 3.80 (t, 9.5, 1H), 3.79 (dd, 11, 2.5, 1H), 3.62 (br
app t, 9.5, 2H), 3.44–3.49 (m, 2H), 3.34 (s, 3H), 3.26
(ddd, 2.5, 4.5, 13.0, 1H), 2.25 (s, 3H), 1.96 (s, 3H), 1.95
(s, 3H), 1.92 (s, 3H); C NMR 192.38, 170.66, 170.03,
169.46, 139.45, 138.26, 137.69, 128.64, 128.49, 128.29.
128.21, 128.18, 128.06, 128.03, 127.71, 127.32, 127.09,
99.34, 98.35, 80.03, 78.83, 75.91, 74.98, 73.43, 71.63,
13
1
990, 38, 5397–5400.
6. The bond lengths estimated for 2 are those of a carbohy-
drate thio-S-acetate, and are typical for this functional-