D. Smart et al
Palmitoylethanolamide analogues and VR1 receptors
457
a
series of N-acyl amides with rather similar relative
levels of the C16:0 and C18:0 N-acyl ethanolamines were
increased 39 and 21 fold (Kondo et al., 1998). Although there
is no apparent increased sensitivity of peripheral nociceptors
to exogenously applied AEA in arthritic rat knee joints
(Gauldie et al., 2001), it is nevertheless tempting to speculate
that N-acyl ethanolamines may be an important regulator of
the actions of AEA upon vanilloid receptors under severe
in¯ammatory conditions.
speci®cities (Cravatt et al., 1996; Giang & Cravatt, 1997).
Thus, in agreement with the conclusion of De Petrocellis et
al. (2001b), FAAH inhibition does not account for the
potentiation of AEA eects upon Ca2+-in¯ux in hVR1-
HEK293 cells produced by the N-acyl ethanolamines.
In conclusion, the present study has con®rmed that PEA
has entourage-like eects at VR1 receptors expressed on
hVR1-HEK293 cells and demonstrated that other N-acyl
ethanolamines have even more dramatic potentiating eects.
It is of course hazardous to extrapolate data obtained from
transfected cells to the situation in vivo. However, one
important property of N-acyl ethanolamines in the body is
that their synthesis is dramatically increased under certain
conditions of cellular stress, ischaemia and in¯ammation (see
e.g. Epps et al., 1979; Kondo et al., 1998; Berdyshev et al.,
2000; Hansen et al., 2001). Thus, for example, 9 h following
cadmium chloride-induced in¯ammation in the rat testis, the
This study was supported by grants from the Swedish Medical
Research Foundation (Grant no. 12158), the Swedish Asthma- and
Allergy Association's Research Foundation, Konung Gustav V's
and Drottning Victorias Foundation, the Swedish Psoriasis
Association, and the Research Funds of the Medical Odontologi-
cal Faculty, Umea University. The chemical work was ®nancially
supported by the Belgian National Fund for Scienti®c Research
and a FSR grant from the Universite catholique de Louvain.
References
BEN-SHABAT, S., FRIDE, E., SHESKIN, T., TAMIRI, T., RHEE, M.-H.,
VOGEL, Z., BISOGNO, T., DE PETROCELLIS, L., DI MARZO, V. &
MECHOULAM, R. (1998). An entourage eect: inactive endogen-
ous fatty acid glycerol esters enhance 2-arachidonyl-glycerol
cannabinoid activity. Eur. J. Pharmacol., 353, 23 ± 31.
BERDYSHEV, E.V., SCHMID, P.C., DONG, Z. & SCHMID, H.H.O.
(2000). Stress-induced generation of N-acylethanolamines in
mouse epidermal JB6 P+ cells. Biochem. J., 346, 369 ± 374.
BOGER, D.L., FECIK, R.A., PATTERSON, J.E., MIYAUCHI, H.,
PATRICELLI, M.P. & CRAVATT, B.F. (2000). Fatty acid amide
hydrolase substrate speci®city. Bioorg. Med. Chem. Lett., 10,
2613 ± 2616.
CATERINA, M.J., SCHUMACHER, M.A., TOMINAGA, M., ROSEN,
T.A., LEVINE, J.D. & JULIUS, D. (1997). The capsaicin receptor: a
heat-activated ion channel in the pain pathway. Nature, 389,
816 ± 824.
CRAIB, S.J., ELLINGTON, H.C., PERTWEE, R.G. & ROSS, R.A. (2001).
A possible role of lipoxygenase in the activation of vanilloid
receptors by anandamide in the guinea-pig bronchus. Br. J.
Pharmacol., 134, 30 ± 37.
CRAVATT, B.F., GIANG, D.K., MAYFIELD, S.P., BOGER, D.L.,
LERNER, R.A. & GILULA, N.B. (1996). Molecular characteriza-
tion of an enzyme that degrades neuromodulatory fatty-acid
amides. Nature, 384, 83 ± 87.
DE PETROCELLIS, L., BISOGNO, T., MACCARRONE, M., DAVIS, J.B.,
FINAZZI-AGRO, A. & DI MARZO, V. (2001a). The activity of
anandamide at vanilloid VR1 receptors requires facilitated
transport across the cell membrane and is limited by intracellular
metabolism. J. Biol. Chem., 276, 12856 ± 12863.
EPPS, D.E., PALMER, J.W., SCHMID, H.H.O. & PFEIFFER, D.R.
(1982). Inhibition of permeability-dependent Ca2+ release from
mitochondria by N-acylethanolamines, a class of lipids synthe-
sized in ischemic heart tissue. J. Biol. Chem., 257, 1383 ± 1391.
EPPS, D.E., SCHMID, P.C., NATARAJAN, V. & SCHMID, H.H.O.
(1979). N-Acylethanolamine accumulation in infarcted myocar-
dium. Biochem. Biophys. Res. Commun., 90, 628 ± 633.
FOWLER, C.J., TIGER, G.
& STENSTROM, A. (1997). Ibuprofen
inhibits rat brain deamidation of anandamide at pharmacologi-
cally relevant concentrations. Mode of inhibition and structure-
activity relationship. J. Pharmacol. Exp. Ther., 283, 729 ± 734.
GIANG, D.K. & CRAVATT, B.F. (1997). Molecular characterization of
human and mouse fatty acid amide hydrolases. Proc. Natl. Acad.
Sci. USA, 94, 2238 ± 2242.
GAULDIE, S.D., MCQUEEN, D.S., PERTWEE, R. & CHESSELL, I.P.
(2001). Anandamide activates peripheral nociceptors in normal
and arthritic knee joints. Br. J. Pharmacol., 132, 617 ± 621.
HANSEN, H.H., SCHMID, P.C., BITTIGAU, P., LASTRES-BECKER, I.,
BERRENDERO, F., MANZANARES, J., IKONOMIDOU, C.,
SCHMID, H.H., FERNANDEZ-RUIZ, J.J. & HANSEN, H.S. (2001).
Anandamide, but not 2-arachidonoylglycerol, accumulates
during in vivo neurodegeneration. J. Neurochem., 78, 1415 ± 1427.
JONSSON, K.-O., VANDEVOORDE, S., LAMBERT, D.M., TIGER, G. &
FOWLER, C.J. (2001). Eects of homologues and analogues of
palmitoylethanolamide upon the inactivation of the endocanna-
binoid anandamide. Br. J. Pharmacol., 133, 1263 ± 1275.
JUNG, J., HWANG, S.W., KWAK, J., LEE, S.-Y., KANG, C.-J., KIM,
W.B., KIM, D. & OH, U. (1999). Capsaicin binds to the intracellular
domain of the capsaicin-activated ion channel. J. Neurosci., 19,
529 ± 538.
DE PETROCELLIS, L., DAVIS, J.B.
& DI MARZO, V. (2001b).
Palmitoylethanolamide enhances anandamide stimulation of
human vanilloid VR1 receptors. FEBS Letts., 506, 253 ± 256.
DEVANE, W.A., HANUS, L., BREUER, A., PERTWEE, R.G., STEVEN-
SON, L.A., GRIFFIN, G., GIBSON, D., MANDELBAUM, A.,
ETINGER, A. & MECHOULAM, R. (1992). Isolation and structure
of a brain constituent that binds to the cannabinoid receptor.
Science, 258, 1946 ± 1949.
KONDO, S., SUGIURA, T., KODAKA, T., KUDO, N., WAKU, K. &
TOKUMURA, A. (1998). Accumulation of various N-acylethano-
lamines including N-arachidonoylethanolamine (anandamide) in
cadmium chloride-administered rat testis. Arch. Biochem.
Biophys., 354, 303 ± 310.
LAMBERT, D.M., DIPAOLO, F.G., SONVEAUX, P., KANYONYO, M.,
GOVAERTS, S.J., HERMANS, E., BUEB, J., DELZENNE, N.M. &
TSCHIRHART, E.J. (1999). Analogues and homologues of N-
palmitoylethanolamide, a putative endogenous CB2 cannabi-
noid, as potential ligands for the cannabinoid receptors. Biochim.
Biophys. Acta, 1440, 266 ± 274.
DEUTSCH, D.G.
& CHIN, S.A. (1993). Enzymatic synthesis and
degradation of anandamide, a cannabinoid receptor agonist.
Biochem. Pharmacol., 46, 791 ± 796.
DI MARZO, V., BISOGNO, T.
& DE PETROCELLIS, L. (2001).
Anandamide: some like it hot. Trends Pharmacol. Sci., 22,
346 ± 349.
EISENTHAL, R. & CORNISH-BOWDEN, A. (1974). The direct linear
plot. A new graphical procedure for estimating enzyme kinetic
parameters. Biochem. J., 139, 715 ± 720.
LAMBERT, D.M., VANDEVOORDE, S., DIEPENDAELE, G., GO-
VAERTS, S.J. & ROBERT, A.R. (2001). Anticonvulsant activity of
N-palmitoylethanolamide, a putative endocannabinoid, in mice.
Epilepsia, 42, 321 ± 327.
British Journal of Pharmacology vol 136 (3)