targetꢀtheꢀvinylꢀetherꢀbondꢀofꢀplasmalogens:ꢀdisparateꢀutilizationꢀofꢀ
sodiumꢀhalidesꢀinꢀtheꢀproductionꢀofꢀalpha-haloꢀfattyꢀaldehydes.ꢀJ.
Biol. Chem. 277:ꢀ4694–4703.
theꢀrequirementꢀofꢀtheꢀ-halogenꢀforꢀreactivityꢀwithꢀthiolsꢀ
forꢀthisꢀcovalentꢀmodificationꢀofꢀproteins.ꢀFurthermore,ꢀ
2-BrHDyAꢀmodificationꢀofꢀproteinꢀwasꢀgreaterꢀthanꢀthatꢀ
byꢀ2-ClHDyA,ꢀsimilarꢀtoꢀthatꢀwithꢀreactionsꢀofꢀ2-BrHDAꢀ
andꢀ2-ClHDAꢀwithꢀGSHꢀthatꢀreflectsꢀbromineꢀasꢀaꢀbetterꢀ
leavingꢀgroupꢀforꢀthiolꢀnucleophilicꢀattack.ꢀNEMꢀgreatlyꢀ
diminishedꢀproteinꢀbindingꢀinꢀbothꢀtheꢀ2-ClHDyA-ꢀandꢀ
theꢀ 2-BrHDyA-treatedꢀ samples,ꢀ supportingꢀ theꢀ mecha-
nismꢀofꢀcovalentꢀmodificationꢀbeingꢀthroughꢀproteinꢀthi-
ols.ꢀ NACꢀ pretreatmentꢀ wasꢀ shownꢀ toꢀ blockꢀ 2-BrHDyAꢀ
proteinꢀbinding,ꢀbutꢀnotꢀ2-ClHDyA.ꢀTheꢀdiscrepancyꢀwasꢀ
likelyꢀdueꢀtoꢀtheꢀreducedꢀreactivityꢀofꢀtheꢀthiolꢀofꢀNACꢀ
withꢀ2-ClHDyAꢀcomparedꢀwithꢀ2-BrHDyA,ꢀwhichꢀallowedꢀ
2-ClHDyAꢀtoꢀenterꢀtheꢀcellꢀandꢀbindꢀprotein.ꢀCollectivelyꢀ
theseꢀstudiesꢀdemonstrateꢀthatꢀ-BrFALDꢀandꢀ-ClFALD
covalentlyꢀmodifyꢀcellularꢀproteinꢀthroughꢀthiol-dependentꢀ
mechanisms.ꢀInterestingly,ꢀNussholdꢀetꢀal.ꢀ(13)ꢀdemon-
stratedꢀaꢀnumberꢀofꢀendothelialꢀcellꢀproteinsꢀthatꢀreactꢀ
withꢀ2-ClHDA.ꢀProteomicꢀanalysesꢀrevealedꢀthatꢀproteinsꢀ
associatedꢀwithꢀcytoskeletalꢀstructure,ꢀmetabolicꢀactivity,ꢀ
andꢀoxidativeꢀstressꢀwereꢀmodifiedꢀbyꢀ2-ClHDA.ꢀAlso,ꢀtheyꢀ
showedꢀdecreasedꢀmetabolicꢀactivity,ꢀdeterminedꢀbyꢀMTTꢀ
assays,ꢀinꢀendothelialꢀcellsꢀtreatedꢀwithꢀ25ꢀandꢀ50ꢀMꢀ2-
ClHDA.ꢀMTTꢀactivityꢀwasꢀnotꢀstatisticallyꢀloweredꢀinꢀendo-
thelialꢀcellsꢀtreatedꢀwithꢀ10ꢀMꢀ2-ClHDA.ꢀTheꢀresultsꢀhereinꢀ
areꢀsimilarꢀtoꢀthoseꢀobservedꢀbyꢀNussholdꢀetꢀal.ꢀ(13),ꢀwithꢀ
noꢀdecreasesꢀinꢀMTTꢀactivityꢀobservedꢀatꢀ10ꢀMꢀ2-ClHDAꢀinꢀ
THP-1ꢀ cellsꢀ andꢀ aꢀ slight,ꢀ yetꢀ statisticallyꢀ insignificant,ꢀ de-
creaseꢀinꢀMTTꢀactivityꢀobservedꢀatꢀ25ꢀMꢀ2-ClHDA.ꢀTheꢀ
presentꢀ studiesꢀ revealedꢀ thatꢀ 2-BrHDAꢀ significantlyꢀ de-
creasedꢀ metabolicꢀ activity.ꢀ Itꢀ isꢀ possibleꢀ thatꢀ futureꢀ pro-
teomicꢀstudiesꢀmayꢀalsoꢀrevealꢀthatꢀproteinsꢀassociatedꢀwithꢀ
metabolicꢀactivityꢀwillꢀbeꢀmodifiedꢀbyꢀ2-BrHDA.
ꢀ 3.ꢀ Thukkani,ꢀA.ꢀK.,ꢀF-F.ꢀF.ꢀHsu,ꢀJ.ꢀR.ꢀCrowley,ꢀR.ꢀB.ꢀWysolmerski,ꢀC.ꢀ
J.ꢀAlbert,ꢀandꢀD.ꢀa.ꢀFord.ꢀ2002.ꢀReactiveꢀchlorinatingꢀspeciesꢀpro-
ducedꢀduringꢀneutrophilꢀactivationꢀtargetꢀtissueꢀplasmalogens:ꢀpro-
ductionꢀofꢀtheꢀchemoattractant,ꢀ2-chlorohexadecanal.ꢀJ. Biol. Chem.
277:ꢀ3842–3849.
ꢀ 4.ꢀ Thukkani,ꢀA.ꢀK.,ꢀC.ꢀJ.ꢀAlbert,ꢀK.ꢀR.ꢀWildsmith,ꢀM.ꢀC.ꢀMessner,ꢀB.ꢀ
D.ꢀMartinson,ꢀF.ꢀF.ꢀHsu,ꢀandꢀD.ꢀA.ꢀFord.ꢀ2003.ꢀMyeloperoxidase-
derivedꢀ reactiveꢀ chlorinatingꢀ speciesꢀ fromꢀ humanꢀ monocytesꢀ
targetꢀplasmalogensꢀinꢀlowꢀdensityꢀlipoprotein.ꢀJ. Biol. Chem. 278:
36365–36372.
ꢀ 5.ꢀ Thukkani,ꢀA.ꢀK.,ꢀJ.ꢀMcHowat,ꢀF.ꢀF.ꢀHsu,ꢀM.ꢀL.ꢀBrennan,ꢀS.ꢀL.ꢀHazen,ꢀ
andꢀD.ꢀA.ꢀFord.ꢀ2003.ꢀIdentificationꢀofꢀalpha-chloroꢀfattyꢀaldehydesꢀ
andꢀunsaturatedꢀlysophosphatidylcholineꢀmolecularꢀspeciesꢀinꢀhu-
manꢀatheroscleroticꢀlesions.ꢀCirculation. 108:ꢀ3128–3133.
ꢀ 6.ꢀ Thukkani,ꢀA.ꢀK.,ꢀB.ꢀD.ꢀMartinson,ꢀC.ꢀJ.ꢀAlbert,ꢀG.ꢀA.ꢀVogler,ꢀandꢀD.ꢀ
A.ꢀFord.ꢀ2005.ꢀNeutrophil-mediatedꢀaccumulationꢀofꢀ2-ClHDAꢀdur-
ingꢀ myocardialꢀ infarction:ꢀ 2-ClHDA-mediatedꢀ myocardialꢀ injury.ꢀ
Am. J. Physiol. Heart Circ. Physiol. 288:ꢀH2955–H2964.
ꢀ 7.ꢀ Ullen,ꢀA.,ꢀG.ꢀFauler,ꢀE.ꢀBernhart,ꢀC.ꢀNusshold,ꢀH.ꢀReicher,ꢀH-J.ꢀLeis,ꢀ
E.ꢀMalle,ꢀandꢀW.ꢀSattler.ꢀ2012.ꢀPhloretinꢀamelioratesꢀ2-chlorohexa-
decanal-mediatedꢀbrainꢀmicrovascularꢀendothelialꢀcellꢀdysfunctionꢀ
inꢀvitro.ꢀFree Radic. Biol. Med. 53:ꢀ1770–1781.
ꢀ 8.ꢀ Nusshold,ꢀC.,ꢀM.ꢀKollroser,ꢀH.ꢀKöfeler,ꢀG.ꢀRechberger,ꢀH.ꢀReicher,ꢀ
A.ꢀUllen,ꢀE.ꢀBernhart,ꢀS.ꢀWaltl,ꢀI.ꢀKratzer,ꢀA.ꢀHermetter,ꢀetꢀal.ꢀ2010.ꢀ
Hypochloriteꢀ modificationꢀ ofꢀ sphingomyelinꢀ generatesꢀ chlori-
natedꢀlipidꢀspeciesꢀthatꢀinduceꢀapoptosisꢀandꢀproteomeꢀalterationsꢀ
inꢀ dopaminergicꢀ pc12ꢀ neuronsꢀ inꢀ vitro.ꢀ Free Radic. Biol. Med. 48:
1588–1600.
ꢀ 9.ꢀ Marsche,ꢀG.,ꢀR.ꢀHeller,ꢀG.ꢀFauler,ꢀA.ꢀKovacevic,ꢀA.ꢀNuszkowski,ꢀW.ꢀ
Graier,ꢀW.ꢀSattler,ꢀandꢀE.ꢀMalle.ꢀ2004.ꢀ2-chlorohexadecanalꢀderivedꢀ
fromꢀ hypochlorite-modifiedꢀ high-densityꢀ lipoprotein-associatedꢀ
plasmalogenꢀisꢀaꢀnaturalꢀinhibitorꢀofꢀendothelialꢀnitricꢀoxideꢀbio-
synthesis.ꢀArterioscler. Thromb. Vasc. Biol. 24:ꢀ2302–2306.
ꢀ10.ꢀ Ford,ꢀD.ꢀA.,ꢀJ.ꢀHonavar,ꢀC.ꢀJ.ꢀAlbert,ꢀM.ꢀA.ꢀDuerr,ꢀJ.ꢀY.ꢀOh,ꢀS.ꢀDoran,ꢀ
S.ꢀMatalon,ꢀandꢀR.ꢀP.ꢀPatel.ꢀ2016.ꢀFormationꢀofꢀchlorinatedꢀlipidsꢀ
post-chlorineꢀgasꢀexposure.ꢀJ. Lipid Res. 57:ꢀ1529–1540.
ꢀ11.ꢀ Albert,ꢀ C.ꢀ J.,ꢀ A.ꢀ K.ꢀ Thukkani,ꢀ R.ꢀ M.ꢀ Heuertz,ꢀ A.ꢀ Slungaard,ꢀ S.ꢀ L.ꢀ
Hazen,ꢀandꢀD.ꢀA.ꢀFord.ꢀ2003.ꢀEosinophilꢀperoxidase-derivedꢀreac-
tiveꢀbrominatingꢀspeciesꢀtargetꢀtheꢀvinylꢀetherꢀbondꢀofꢀplasmalogensꢀ
generatingꢀaꢀnovelꢀchemoattractant,ꢀalpha-bromoꢀfattyꢀaldehyde.ꢀJ.
Biol. Chem. 278:ꢀ8942–8950.
TheseꢀstudiesꢀsupportꢀthatꢀFALD-GSHꢀisꢀaꢀmetaboliteꢀ
foundꢀ endogenouslyꢀ asꢀ aꢀ resultꢀ ofꢀ theꢀ conjugationꢀ ofꢀ
-BrFALDꢀwithꢀGSHꢀduringꢀneutrophilꢀandꢀeosinophilꢀ
activation,ꢀasꢀwellꢀasꢀinꢀmiceꢀfollowingꢀbromineꢀexposure.ꢀ
Itꢀwillꢀbeꢀimportantꢀinꢀtheꢀfutureꢀtoꢀdetermineꢀwhetherꢀ
FALD-GSHꢀ hasꢀ biologicalꢀ activitiesꢀ inꢀ additionꢀ toꢀ itsꢀ
putativeꢀ roleꢀ asꢀ aꢀ biomarker.ꢀ Interestingly,ꢀ FALD-GSHꢀ
canꢀbeꢀcomparedꢀstructurallyꢀtoꢀLTC4,ꢀsuggestingꢀthatꢀ
theꢀimpactꢀofꢀFALD-GSHꢀonꢀLTC4ꢀsignalingꢀpathwaysꢀ
shouldꢀbeꢀinvestigated.ꢀItꢀwillꢀalsoꢀbeꢀimportantꢀtoꢀdeter-
mineꢀtheꢀmetabolicꢀclearanceꢀofꢀFALD-GSH,ꢀincludingꢀ
whetherꢀ orꢀ notꢀ theꢀ aldehydeꢀ functionalꢀ groupꢀ canꢀ beꢀ
oxidizedꢀorꢀreducedꢀyieldingꢀaꢀGSHꢀadductꢀcontainingꢀaꢀ
carboxylicꢀ acidꢀ orꢀ alcohol,ꢀ respectively.ꢀ Additionally,ꢀ
proteinꢀmodificationꢀbyꢀthiolꢀreactivityꢀwithꢀ-BrFALDꢀ
needsꢀtoꢀbeꢀexploredꢀasꢀaꢀregulatoryꢀmechanismꢀofꢀpro-
teinꢀfunction.
ꢀ12.ꢀ Duerr,ꢀM.ꢀA.,ꢀR.ꢀAurora,ꢀandꢀD.ꢀA.ꢀFord.ꢀ2015.ꢀIdentificationꢀofꢀglu-
tathioneꢀadductsꢀofꢀalpha-chlorofattyꢀaldehydesꢀproducedꢀinꢀacti-
vatedꢀneutrophils.ꢀJ. Lipid Res. 56:ꢀ1014–1024.
ꢀ13.ꢀ Nusshold,ꢀ C.,ꢀ A.ꢀ Ullen,ꢀ N.ꢀ Kogelnik,ꢀ E.ꢀ Bernhart,ꢀ H.ꢀ Reicher,ꢀ I.ꢀ
Plastira,ꢀT.ꢀGlasnov,ꢀK.ꢀZangger,ꢀG.ꢀRechberger,ꢀM.ꢀKollroser,ꢀetꢀal.ꢀ
2016.ꢀAssessmentꢀofꢀelectrophileꢀdamageꢀinꢀaꢀhumanꢀbrainꢀendo-
thelialꢀcellꢀlineꢀutilizingꢀaꢀclickableꢀalkyneꢀanalogꢀofꢀ2-chlorohexa-
decanal.ꢀFree Radic. Biol. Med. 90:ꢀ59–74.
ꢀ14.ꢀ vanꢀDalen,ꢀC.ꢀJ.,ꢀandꢀA.ꢀJ.ꢀKettle.ꢀ2001.ꢀSubstratesꢀandꢀproductsꢀofꢀ
eosinophilꢀperoxidase.ꢀBiochem. J. 358:ꢀ233–239.
ꢀ15.ꢀ Weiss,ꢀS.ꢀJ.,ꢀS.ꢀT.ꢀTest,ꢀC.ꢀM.ꢀEckmann,ꢀD.ꢀRoos,ꢀandꢀS.ꢀRegiani.ꢀ
1986.ꢀ Brominatingꢀ oxidantsꢀ generatedꢀ byꢀ humanꢀ eosinophils.ꢀ
Science. 234:ꢀ200–203.
ꢀ16.ꢀ Tietz,ꢀ N.ꢀ W..ꢀ 1999.ꢀ Tietzꢀ Textbookꢀ ofꢀ Clinicalꢀ Chemistry.ꢀ C.ꢀ A.ꢀ
Burtis,ꢀ E.ꢀ R.ꢀ Ashwood,ꢀ andꢀ N.W.ꢀ Tietz,ꢀ editors.ꢀ W.B.ꢀ Saunders,ꢀ
Philadelphia,ꢀPA.
ꢀ17.ꢀ Leustik,ꢀM.,ꢀS.ꢀDoran,ꢀA.ꢀBracher,ꢀS.ꢀWilliams,ꢀG.ꢀL.ꢀSquadrito,ꢀT.ꢀR.ꢀ
Schoeb,ꢀE.ꢀPostlethwait,ꢀandꢀS.ꢀMatalon.ꢀ2008.ꢀMitigationꢀofꢀchlo-
rine-inducedꢀlungꢀinjuryꢀbyꢀlow-molecular-weightꢀantioxidants.ꢀAm.
J. Physiol. Lung Cell. Mol. Physiol. 295:ꢀL733–L743.
ꢀ18.ꢀ Aggarwal,ꢀ S.,ꢀ A.ꢀ Lam,ꢀ S.ꢀ Bolisetty,ꢀ M.ꢀ A.ꢀ Carlisle,ꢀ A.ꢀ Traylor,ꢀ A.ꢀ
Agarwal,ꢀandꢀS.ꢀMatalon.ꢀ2016.ꢀHemeꢀattenuationꢀamelioratesꢀirri-
tantꢀgasꢀinhalation-inducedꢀacuteꢀlungꢀinjury.ꢀAntioxid. Redox Signal.
24:ꢀ99–112.
ꢀ19.ꢀ Wacker,ꢀ B.ꢀ K.,ꢀ C.ꢀ J.ꢀ Albert,ꢀ B.ꢀ A.ꢀ Ford,ꢀ andꢀ D.ꢀ A.ꢀ Ford.ꢀ 2013.ꢀ
Strategiesꢀforꢀtheꢀanalysisꢀofꢀchlorinatedꢀlipidsꢀinꢀbiologicalꢀsystems.ꢀ
Free Radic. Biol. Med. 59:ꢀ92–99.
ꢀ20.ꢀ Zheng,ꢀB.,ꢀM.ꢀDeRan,ꢀX.ꢀLi,ꢀX.ꢀLiao,ꢀM.ꢀFukata,ꢀandꢀX.ꢀWu.ꢀ
2013.ꢀ 2-bromopalmitateꢀ analoguesꢀ asꢀ activity-basedꢀ probesꢀ
toꢀ exploreꢀ palmitoylꢀ acyltransferases.ꢀ J. Am. Chem. Soc. 135:
7082–7085.
REFERENCES
ꢀ 1.ꢀ Albert,ꢀC.ꢀJ.,ꢀJ.ꢀR.ꢀCrowley,ꢀF.ꢀF.ꢀHsu,ꢀA.ꢀK.ꢀThukkani,ꢀandꢀD.ꢀA.ꢀFord.ꢀ
2001.ꢀReactiveꢀchlorinatingꢀspeciesꢀproducedꢀbyꢀmyeloperoxidaseꢀ
targetꢀtheꢀvinylꢀetherꢀbondꢀofꢀplasmalogens:ꢀidentificationꢀofꢀ2-chlo-
rohexadecanal.ꢀJ. Biol. Chem. 276:ꢀ23733–23741.
ꢀ 2.ꢀ Albert,ꢀC.ꢀJ.,ꢀJ.ꢀR.ꢀCrowley,ꢀF.ꢀF.ꢀHsu,ꢀA.ꢀK.ꢀThukkani,ꢀandꢀD.ꢀA.ꢀFord.ꢀ
2002.ꢀReactiveꢀbrominatingꢀspeciesꢀproducedꢀbyꢀmyeloperoxidaseꢀ
ꢀ21.ꢀ Kukreja,ꢀR.ꢀC.,ꢀA.ꢀB.ꢀWeaver,ꢀandꢀM.ꢀL.ꢀHess.ꢀ1989.ꢀStimulatedꢀ
humanꢀ neutrophilsꢀ damageꢀ cardiacꢀ sarcoplasmicꢀ reticulumꢀ
704
Journal of Lipid Research Volume 59, 2018