10.1002/chem.201802498
Chemistry - A European Journal
COMMUNICATION
since it too used succinaldehyde in a double aldol-type (Mannich)
reaction. See: E. J. Sorensen, Nature 2012, 489, 214-215.
[10] S. Prevost, K. Thai, N. Schützenmeister, G. Coulthard, W. Erb, V. K.
Aggarwal, Org. Lett. 2015, 17, 504-507.
[11] H. Baars, M. J. Classen, V. K. Aggarwal, Org. Lett. 2017, 19, 6008-
6011.
instability of β-hydroxy boronic ester 17 towards column
chromatography, the crude reaction mixture from the aldol
reaction was treated with MsCl and NEt3 to give the
corresponding mesylate, and subsequent elimination upon
reaction with DBU produced exclusively the E-configured
elimination product. The resulting boronic ester was oxidized
to secondary alcohol 18 using NaBO3·4H2O in 23% overall
yield (over the three steps from 8 and 9). Finally, treatment with
HBF4 gave Δ12-PGJ3 (3) in a 75% yield. The total synthesis of
Δ12-PGJ3 (3) was achieved in 12 steps (longest linear
sequence, LLS).
[12] (a) For related organocatalytic syntheses of cyclopentanes and their
applications to PG synthesis see: Y. Hayashi, S. Umemiya, Angew.
Chem., Int. Ed. 2013, 52, 3450-3452; (b) Y. Hayashi, S. Umemiya,
Angew. Chem. 2013, 125, 3534-3536; (c) S. Umemiya, D.
Sakamoto, G. Kawauchi, Y. Hayashi, Org. Lett. 2017, 19, 1112-
1115; (d) For a perspective about pot economy and one-pot
synthesis, see: Y. Hayashi, Chem. Sci. 2016, 7, 866-880.
[13] B. Heasley, Curr. Org. Chem. 2014, 18, 641-686.
[14] (a) S. Hegde, N. Kaushal, K. C. Ravindra, C. Chiaro, K. T. Hafer, U.
H. Gandhi, J. T. Thompson, J. P. van den Heuvel, M. J. Kennett, P.
Hankey, R. F. Paulson, K. S. Prabhu, Blood 2011, 118, 6909-6919;
(b) A. K. Kudva, N. Kaushal, S. Mohinta, M. J. Kennett, A. August,
R. F. Paulson, K. S. Prabhu, PLoS One 2013, 8, e80622.
[15] A. M. Hyde, S. L. Zultanski, J. H. Waldman, Y.-L. Zhong, M. Shevlin,
F. Peng, Org. Process Res. Dev. 2017, 21, 1355-1370.
[16] (a) K. C. Nicolaou, P. Heretsch, A. ElMarrouni, C. R. H. Hale, K. K.
Pulukuri, A. K. Kudva, V. Narayan, K. S. Prabhu, Angew. Chem.,
Int. Ed. 2014, 53, 10443-10447; (b) K. C. Nicolaou, P. Heretsch, A.
ElMarrouni, C. R. H. Hale, K. K. Pulukuri, A. K. Kudva, V. Narayan,
K. S. Prabhu, Angew. Chem. 2014, 126, 10611-10615; (c) K. C.
Nicolaou, K. K. Pulukuri, R. Yu, S. Rigol, P. Heretsch, C. I. Grove,
C. R. H. Hale, A. ElMarrouni, Chem. Eur. J. 2016, 22, 8559-8570.
[17] K. C. Nicolaou, K. K. Pulukuri, S. Rigol, P. Heretsch, R. Yu, C. I.
Grove, C. R. H. Hale, A. ElMarrouni, V. Fetz, M. Brönstrup, M.
Aujay, J. Sandoval, J. Gavrilyuk, J. Am. Chem. Soc. 2016, 138,
6550-6560.
[18] (a) Y. Kobayashi, M. G. Murugesh, M. Nakano, E. Takahisa, S. B.
Usmani, T. Ainai, J. Org. Chem. 2002, 67, 7110-7123; (b) Y.
Kobayashi, M. G. Murugesh, M. Nakano, Tetrahedron Lett. 2001,
42, 1703-1707.
[19] (a) H. P. Acharya, Y. Kobayashi, Tetrahedron 2006, 62, 3329-3343;
(b) H. P. Acharya, Y. Kobayashi, Tetrahedron Lett. 2004, 45, 1199-
1202; (c) M. Iqbal, Y. Li, P. Evans, Tetrahedron 2004, 60, 2531-
2538; (d) R. Zurawinski, M. Mikolajczyk, M. Cieslak, K. Krolewska,
J. Kazmierczak-Baranska, Org. Biomol. Chem. 2015, 13, 7000-
7012.
[20] (a) J.-E. Lee, J. Yun, Angew. Chem., Int. Ed. 2008, 47, 145-147; (b)
J. E. Lee, J. Yun, Angew. Chem. 2008, 120, 151-153; (c) H. Chea,
H.-S. Sim, J. Yun, Adv. Synth. Catal. 2009, 351, 855-858; (d) J. M.
O’Brien, K.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132,
10630-10633; (e) A. D. J. Calow, A. S. Batsanov, A. Pujol, C. Solé,
E. Fernández, A. Whiting, Org. Lett. 2013, 15, 4810-4813.
[21] (a) T. Honda, M. Ohta, H. Mizutani, J. Chem. Soc., Perkin Trans. 1
1999, 23-30; (b) K. C. Nicolaou, P. Heretsch, C. R. H. Hale, A.
ElMarrouni, K. K. Pulukuri, R. Yu, C. Grove (William Marsh Rice
University), WO2015048268 (A1), 2015.
In conclusion, we have significantly improved the yield of our
previously reported L-proline catalyzed double aldol
dimerization of succinaldehyde from 14% to 29% for the
synthesis of a key enal intermediate 1 that can be employed in
the synthesis of a range of prostanoids. This has been
achieved through a thorough re-evaluation of all of the reaction
parameters, which led us to make four key modifications of the
reaction conditions: changing Me-THF for EtOAc, changing
dibenzylammonium trifluoroacetate 5 to thiomorpholinium
trifluoroacetate 6, the temperature of the second step from
25 °C to 65 °C, and the concentration has been decreased
from 2 M to 0.75 M in the first step and from 1 M to 0.35 M in
the second step. The synthesis, and the practical isolation and
purification of enal 1 on a decagram scale has also been
developed. Furthermore, we have exemplified the synthetic
versatility our enal intermediate 1 through its application to the
total synthesis of Δ12-PGJ3 (3). This was achieved through an
umpolung approach involving the conversion of the
electrophilic enal moiety into an ene-carbamate, which serves
as a masked nucleophilic moiety.
Acknowledgements
We thank EPSRC (EP/M012530/1) for support of this work.
I.P.P. thanks AstraZeneca and the Bristol Chemical Synthesis
Centre for Doctoral Training, funded by EPSRC
(EP/G036764/1),
N.
S.
thanks
the
Deutsche
Forschungsgemeinschaft (DFG) and the Marie-Sklodowska-
Curie Fellowship program (EC FP7 623426) for postdoctoral
fellowships.
A.P.
thanks
REGPOT-CT-2013-316149-
InnovaBalt for partial fellowship support. We would like to thank
Ian Davies (Princeton University) for useful discussions
relating to the purification of enal 1.
Keywords: prostaglandins • organocatalysis • total synthesis
• aldol reaction • Δ12-PGJ3
[1]
[2]
[3]
H. Peng, F.-E. Chen, Org. Biomol. Chem. 2017, 15, 6281-6301.
C. D. Funk, Science 2001, 294, 1871-1875.
E. Ricciotti, G. A. FitzGerald, Arterioscler., Thromb., Vasc. Biol.
2011, 31, 986-1000.
[4]
[5]
S. Narumiya, G. A. FitzGerald, J. Clin. Invest. 2001, 108, 25-30.
F. Ushikubi, E. Segi, Y. Sugimoto, T. Murata, T. Matsuoka, T.
Kobayashi, H. Hizaki, K. Tuboi, M. Katsuyama, A. Ichikawa, T.
Tanaka, N. Yoshida, S. Narumiya, Nature 1998, 395, 281-284.
P. W. Collins, S. W. Djuric, Chem. Rev. 1993, 93, 1533-1564.
B. L. LeVarge, Ther. Clin. Risk. Manag. 2015, 11, 535-547.
A. Alm, Clin. Ophthalmol. 2014, 8, 1967-1985.
(a) G. Coulthard, W. Erb, V. K. Aggarwal, Nature 2012, 489, 278-
281; (b) In a commentary on our original PGF2α synthesis, Sorensen
likened it to Robinson’s classic biomimetic synthesis of tropinone,
[6]
[7]
[8]
[9]
This article is protected by copyright. All rights reserved.