Inorganic Chemistry
Communication
Biol. 2015, 66, 23. (b) Yano, J.; Yachandra, V. Mn4Ca Cluster in
Photosynthesis: Where and How Water is Oxidized to Dioxygen.
Chem. Rev. 2014, 114, 4175.
(4) Cox, N.; Pantazis, D. A.; Neese, F.; Lubitz, W. Biological Water
Oxidation. Acc. Chem. Res. 2013, 46, 1588.
of Thioanisoles by a Non-Heme Iron(IV)−Oxo Complex. J. Am.
Chem. Soc. 2011, 133, 5236.
(19) (a) Swart, M. A Change in the Oxidation State of Iron:
Scandium is not Innocent. Chem. Commun. 2013, 49, 6650.
(b) Prakash, J.; Rohde, G. T.; Meier, K. K.; Jasniewski, A. J.; Van
Heuvelen, K. M.; Munck, E.; Que, L., Jr. Spectroscopic Identification
̈
(5) Yoon, H.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Electron-Transfer Properties of a Nonheme Manganese(IV)−Oxo
Complex Acting as a Stronger One-Electron Oxidant than the
Iron(IV)−Oxo Analogue. Chem. Commun. 2012, 48, 11187.
(6) Lee, Y.-M.; Kim, S.; Ohkubo, K.; Kim, K.-H.; Nam, W.;
Fukuzumi, S. Unified Mechanism of Oxygen Atom Transfer and
Hydrogen Atom Transfer Reactions with a Triflic Acid-Bound
Nonheme Manganese(IV)−Oxo Complex via Outer-Sphere Electron
Transfer. J. Am. Chem. Soc. 2019, 141, 2614.
(7) Chen, J.; Yoon, H.; Lee, Y.-M.; Seo, M. S.; Sarangi, R.;
Fukuzumi, S.; Nam, W. Tuning the Reactivity of Mononuclear
Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid. Chem. Sci.
2015, 6, 3624.
(8) Jung, J.; Kim, S.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Switchover
of the Mechanism between Electron Transfer and Hydrogen-Atom
Transfer for a Protonated Manganese(IV)-Oxo Complex by Changing
Only the Reaction Temperature. Angew. Chem., Int. Ed. 2016, 55,
7450.
(9) Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S.
Fundamental Electron-Transfer Properties of Non-heme Oxoiron(IV)
Complexes. J. Am. Chem. Soc. 2008, 130, 434.
of an FeIII Center, not FeIV, in the Crystalline Sc−O−Fe Adduct
Derived from [FeIV(O)(TMC)]2+. J. Am. Chem. Soc. 2015, 137, 3478.
(c) Liu, Y.; Lau, T.-C. Activation of Metal Oxo and Nitrido
Complexes by Lewis Acids. J. Am. Chem. Soc. 2019, 141, 3755.
(20) (a) Park, J.; Morimoto, Y.; Lee, Y.-M.; You, Y.; Nam, W.;
Fukuzumi, S. Scandium Ion-Enhanced Oxidative Dimerization and N-
Demethylation of N,N-Dimethylanilines by a Non-Heme Iron(IV)-
Oxo Complex. Inorg. Chem. 2011, 50, 11612. (b) Park, J.; Morimoto,
Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Proton-Promoted Oxygen
Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme
Iron(IV)-Oxo Complex. J. Am. Chem. Soc. 2012, 134, 3903.
(c) Morimoto, Y.; Park, J.; Suenobu, T.; Lee, Y.-M.; Nam, W.;
Fukuzumi, S. Mechanistic Borderline of One-Step Hydrogen Atom
Transfer versus Stepwise Sc3+-Coupled Electron Transfer from Benzyl
Alcohol Derivatives to a Non-Heme Iron(IV)-Oxo Complex. Inorg.
Chem. 2012, 51, 10025. (d) Park, J.; Lee, Y.-M.; Nam, W.; Fukuzumi,
S. Brønsted Acid-Promoted C−H Bond Cleavage via Electron
Transfer from Toluene Derivatives to a Protonated Nonheme
Iron(IV)-Oxo Complex with No Kinetic Isotope Effect. J. Am.
Chem. Soc. 2013, 135, 5052.
(21) Morimoto, Y.; Kotani, H.; Park, J.; Lee, Y.-M.; Nam, W.;
Fukuzumi, S. Metal Ion-Coupled Electron Transfer of a Nonheme
Oxoiron(IV) Complex: Remarkable Enhancement of Electron-
Transfer Rates by Sc3+. J. Am. Chem. Soc. 2011, 133, 403.
(10) Park, J.; Lee, Y.-M.; Ohkubo, K.; Nam, W.; Fukuzumi, S.
Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-
Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid.
Inorg. Chem. 2015, 54, 5806.
(22) (a) Cahill, K. J.; Johnson, R. P. Synthetic Efforts Toward the
Macrolactone Core of Leucascandrolide A. J. Org. Chem. 2013, 78,
1864. (b) Fukuzumi, S.; Ohkubo, K.; Okamoto, T. Metal Ion-
Catalyzed Diels−Alder and Hydride Transfer Reactions. Catalysis of
Metal Ions in the Electron-Transfer Step. J. Am. Chem. Soc. 2002, 124,
14147. (c) Fukuzumi, S.; Okamoto, T. Magnesium Perchlorate-
Catalyzed Diels-Alder Reactions of Anthracenes with p-Benzoquinone
Derivatives: Catalysis on the Electron Transfer Step. J. Am. Chem. Soc.
1993, 115, 11600. (d) Fukuzumi, S. Catalysis on Electron Transfer
and the Mechanistic Insight into Redox Reactions. Bull. Chem. Soc.
Jpn. 1997, 70, 1. (e) Yuasa, J.; Fukuzumi, S. Electrostatic Interactions
Effect in the Aminolysis of Some β-Lactams in the Presence of
Poly(ethyleneimine): Structure-Reactivity. J. Phys. Org. Chem. 2008,
21, 886.
(11) (a) Nishida, Y.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi,
S. Effects of Proton Acceptors on Formation of a Non-Heme
Iron(IV)−Oxo Complex via Proton-Coupled Electron Transfer. Inorg.
Chem. 2013, 52, 3094. (b) Fukuzumi, S.; Kotani, H.; Suenobu, T.;
Hong, S.; Lee, Y.-M.; Nam, W. Contrasting Effects of Axial Ligands
on Electron-Transfer Versus Proton-Coupled Electron-Transfer
Reactions of Nonheme Oxoiron(IV) Complexes. Chem. - Eur. J.
2010, 16, 354. (c) Comba, P.; Fukuzumi, S.; Kotani, H.; Wunderlich,
S. Electron-Transfer Properties of an Efficient Nonheme Iron
Oxidation Catalyst with a Tetradentate Bispidine Ligand. Angew.
Chem., Int. Ed. 2010, 49, 2622.
(12) Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. A
Synthetic Mn4Ca-Cluster Mimicking the Oxygen-Evolving Center of
Photosynthesis. Science 2015, 348, 690.
(23) (a) McSkimming, A.; Colbran, S. B. The Coordination
Chemistry of Organo-Hydride Donors: New Prospects for Efficient
Multi-Electron Reduction. Chem. Soc. Rev. 2013, 42, 5439.
(b) Fukuzumi, S.; Fujii, Y.; Suenobu, T. Metal Ion-Catalyzed
Cycloaddition vs Hydride Transfer Reactions of NADH Analogues
with p-Benzoquinones. J. Am. Chem. Soc. 2001, 123, 10191. (c) Yuasa,
J.; Yamada, S.; Fukuzumi, S. A Mechanistic Dichotomy in Scandium
Ion-Promoted Hydride Transfer of an NADH Analogue: Delicate
Balance between One-Step Hydride-Transfer and Electron-Transfer
Pathways. J. Am. Chem. Soc. 2006, 128, 14938. (d) Yuasa, J.; Yamada,
S.; Fukuzumi, S. One-Step versus Stepwise Mechanism in Protonated
Amino Acid-Promoted Electron-Transfer Reduction of a Quinone by
Electron Donors and Two-Electron Reduction by a Dihydronicoti-
namide Adenine Dinucleotide Analogue. Interplay between Electron
Transfer and Hydrogen Bonding. J. Am. Chem. Soc. 2008, 130, 5808.
(e) Fukuzumi, S.; Kotani, H.; Lee, Y.-M.; Nam, W. Sequential
Electron-Transfer and Proton-Transfer Pathways in Hydride-Transfer
Reactions from Dihydronicotinamide Adenine Dinucleotide Ana-
logues to Non-heme Oxoiron(IV) Complexes and p-Chloranil.
Detection of Radical Cations of NADH Analogues in Acid-Promoted
Hydride-Transfer Reactions. J. Am. Chem. Soc. 2008, 130, 15134.
(24) (a) Amador, A. G.; Yoon, T. P. A Chiral Metal Photocatalyst
Architecture for Highly Enantioselective Photoreactions. Angew.
Chem., Int. Ed. 2016, 55, 2304. (b) Beatty, J. W.; Stephenson, C. R.
J. Amine Functionalization via Oxidative Photoredox Catalysis:
(13) (a) Fukuzumi, S. Electron-Transfer Properties of High-Valent
Metal-Oxo Complexes. Coord. Chem. Rev. 2013, 257, 1564.
(b) Bataineh, H.; Pestovsky, O.; Bakac, A. Electron Transfer
Reactivity of the Aqueous Iron(IV)−Oxo Complex. Outer-Sphere
vs Proton-Coupled Electron Transfer. Inorg. Chem. 2016, 55, 6719.
(14) Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-
M.; Nam, W. Crystal Structure of a Metal Ion-Bound Oxoiron(IV)
Complex and Implications for Biological Electron Transfer. Nat.
Chem. 2010, 2, 756.
(15) Chen, J.; Lee, Y.-M.; Davis, K. M.; Wu, X.; Seo, M. S.; Cho, K.-
B.; Yoon, H.; Park, Y. J.; Fukuzumi, S.; Pushkar, Y. N.; Nam, W. A
Mononuclear Non-Heme Manganese(IV)−Oxo Complex Binding
Redox-Inactive Metal Ions. J. Am. Chem. Soc. 2013, 135, 6388.
(16) Yoon, H.; Lee, Y.-M.; Wu, X.; Cho, K.-B.; Sarangi, R.;
Fukuzumi, S.; Nam, W. Enhanced Electron-Transfer Reactivity of
Nonheme Manganese(IV)−Oxo Complexes by Binding Scandium
Ions. J. Am. Chem. Soc. 2013, 135, 9186.
(17) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Unified View of Oxidative C−H Bond Cleavage and Sulfoxidation by
a Nonheme Iron(IV)−Oxo Complex via Lewis Acid-Promoted
Electron Transfer. Inorg. Chem. 2014, 53, 3618.
(18) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Metal Ion Effect on the Switch of Mechanism from Direct Oxygen
Transfer to Metal Ion-Coupled Electron Transfer in the Sulfoxidation
D
Inorg. Chem. XXXX, XXX, XXX−XXX