Angewandte Chemie International Edition
10.1002/anie.202015159
RESEARCH ARTICLE
and n-propanol can be achieved, respectively (details see the
Methods Section). The total solar-to-fuel efficiency for C2+
[7]
A. S. Varela, M. Kroschel, T. Reier, P. Strasser, Catal. Today 2016, 260,
8-13.
[
[
8]
9]
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S.
Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent,
Nat. Catal. 2018, 1, 103-110.
products is as high as 6.4%. The extremely high solar-to-C
2+ efficiency is also higher than all of the reported ones as yet
table S3).
2 4
H or
C
(
a) M. Favaro, H. Xiao, T. Cheng, W. A. Goddard, 3rd, J. Yano, E. J.
Crumlin, Proc. Natl. Acad. Sci. USA 2017, 114, 6706-6711; b) A. Eilert,
F. Cavalca, F. S. Roberts, J. Osterwalder, C. Liu, M. Favaro, E. J.
Crumlin, H. Ogasawara, D. Friebel, L. G. Pettersson, A. Nilsson, J.
Phys. Chem. Lett. 2017, 8, 285-290.
Conclusion
[
[
10] a) A. J. Garza, A. T. Bell, M. Head-Gordon, J. Phys. Chem. Lett. 2018,
9, 601-606; b) Y. Lum, J. W. Ager, Angew. Chem. Int. Ed. 2017, 57,
Comparing the performance of different copper hydroxide/oxides
derived copper, we reveal that the stepped Cu(110) and Cu(100)
sites in Cu(OH) -D/Cu foil are crucial for the enhanced
2
selectivity/activity of C2+ products. In situ ATR-SEIRAS, DFT
calculations, and in situ Raman spectra demonstrate that (110)
facilitating CO adsorption and (100) promoting the C-C coupling
551-554.
11] a) D. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. Yang, Nat. Commun. 2014,
5, 4948; b) Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2,
2551-2582.
[
[
12] Y. Luo, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren,
Energy Environ. Sci. 2017, 10, 1820-1827.
to C2+ products. Cu(OH)
2 2 4
-D show the FEs of ~58% for C H and
13] E. McCafferty, in Introduction to Corrosion Science, Springer, 2010, pp.
95-117.
~
87% for C2+ hydrocarbons and alcohols with the C2+ partial
-2
current density of ~217 mA cm only at -0.54 V in the flow-cell
electrolyzer. We achieve a power conversion efficiency of 56.5%
for C2+ hydrocarbons and alcohols at the same potential.
Coupling to a Si solar cell, the solar conversion efficiency for
[14] J. M. Droog, B. Schlenter, J. Electroanal. Chem. 1980, 112, 387-390.
[
15] A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K.
Nørskov, Energy Environ.l Sci. 2010, 3, 1311-1315.
[
16] a) J. Phys. Chem. B 2002, 15-17; b) K. J. Schouten, Z. Qin, E. Perez
Gallent, M. T. Koper, J. Am. Chem. Soc. 2012, 134, 9864-9867.
17] M Jouny, W. Luc, F. Jiao, Nat. Catal. 2018, 1, 748-755.
2 4
C H and C2+ products is as high as 4.47% and 6.4%,
respectively. This study paves a facile stratagem to develop
efficient catalysts for (solar driven) CRR to C2+ products and
[
[
18] Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, J. Phys. Chem. B 1997,
101, 7075-7081.
guides the development of Cu catalysts for efficient CO
reduction.
2
[19] J. Huang, N. Hormann, E. Oveisi, A. Loiudice, G. L. De Gregorio, O.
Andreussi, N. Marzari, R. Buonsanti, Nat. Commun. 2018, 9, 3117.
[
[
20] a) T. Cheng, H. Xiao, W. A. Goddard, J. Am. Chem. Soc. 2017, 139,
11642-11645; b) F. Calle-Vallejo, M. T. Koper, Angew. Chem. Int. Ed.
2013, 52, 7282-7285.
Acknowledgements
21] J. Heyes, M. Dunwell, B. Xu, J. Phys. Chem. C 2016, 120, 17334-
7341.
1
We acknowledge the National Key R&D Program of China
2016YFB0600901), the National Natural Science Foundation of
China (21525626, 21761132023), and the Program of
Introducing Talents of Discipline to Universities (No.
BP0618007) for financial support.
[22] a) P. Hollins, Surf. Sci. Rep. 1992, 16, 51-94; b) P. Hollins, K. Davies, J.
Pritchard, Surf. Sci. 1984, 138, 75-83; c) A. Malkani, J. Li, J. Anibal, Q.
Lu, B. Xu, ACS Catal. 2020, 10, 941-946.
(
[
23] Y. Huang, Y. Chen, T. Cheng, L.-W. Wang, W. A. Goddard, ACS
Energy Letters 2018, 3, 2983-2988.
[24] R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J.
Am. Chem. Soc. 2014, 136, 6978-6986.
Keywords: Solar-driven • CO
2
reduction • Cu (100) and (110) •
[25] a) D. Ren, J. Gao, L. Pan, Z. Wang, J. Luo, S. M. Zakeeruddin, A.
Hagfeldt, M. Gratzel, Angew. Chem. Int. Ed. 2019, 131, 15178-15182;
b) T. T. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I.
Frenkel, P. J. Kenis, A. A. Gewirth, J. Am. Chem. Soc. 2018, 140,
C2+ products
5
791-5797.
[
1]
a) D. D. Zhu, J. L. Liu, S. Z. Qiao, Adv. Mater. 2016, 28, 3423-3452; b)
R. M. Arán-Ais, D. Gao, B. Roldan Cuenya, Acc. Chem. Res. 2018; c)
C. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504-507.
[
26] a) C. M. Gunathunge, X. Li, J. Li, R. P. Hicks, V. J. Ovalle, M. M.
Waegele, J. Phys. Chem. C 2017, 121, 12337-12344; b) S. Jiang, K.
Klingan, C. Pasquini, H. Dau, J. Phys. Chem. C 2019, 150, 041718.
27] C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo,
F. P. G. de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S.
Bushuyev, Science 2018, 360, 783-787.
[
[
2]
3]
M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 2018, 57, 2165-2177.
a) S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S.
Horch, B. Seger, I. E. Stephens, K. Chan, C. Hahn, Chem. Rev. 2019,
[
119, 7610-7672; b) Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga,
Electrochim. Acta 1994, 39, 1833-1839.
[
4]
a) H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W.
Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. R. Cuenya,
Nat. Commun. 2016, 7, 12123; b) C. W. Li, M. W. Kanan, J. Am. Chem.
Soc. 2012, 134, 7231-7234; c) D. Ren, J. Fong, B. S. Yeo, Nat.
Commun. 2018, 9, 925; d) K. Jiang, R. B. Sandberg, A. J. Akey, X. Liu,
D. C. Bell, J. K. Nørskov, K. Chan, H. Wang, Nat. Catal. 2018, 1, 111-
119; e) D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B.
S. Yeo, ACS Catal. 2015, 5, 2814-2821.
[
[
5]
6]
A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T.
McKeown, M. Kumar, I. E. Stephens, M. W. Kanan, I. Chorkendorff, J.
Am. Chem. Soc. 2015, 137, 9808-9811.
M. G. Kibria, C. T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny, R.
Quintero‐Bermudez, M. B. Ross, O. S. Bushuyev, F. P. García de
Arquer, P. Yang, Adv. Mater. 2018, 30, 1804867.
6
This article is protected by copyright. All rights reserved.