Zhang et al.
A Facile Strategy to Fabricate NZVI/GO Composite for Dechloridation of Trichloroacetic Acid in Water
4. CONCLUSIONS
4. P. Zhang, T. M. Lapara, E. H. Goslan, Y. Xie, S. A. Parsons, and
R. M. Hozalski, Environ. Sci. Technol. 43, 3169 (2009).
5. Y. T. Chen, W. Zhang, A. Hobiny, A. Alsaedi, and X. K. Wang,
Sci. China Chem. 59, 412 (2016).
6. S. J. Yu, J. Wang, S. Song, K. Y. Sun, J. Li, X. X. Wang, Z. S. Chen,
and X. K. Wang, Sci. China Chem. 60, 415 (2017).
7. G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara, and
S. Sampath, J. Colloid Interface Sci. 361, 270 (2011).
8. Z. A. Al-Othman, Inamuddin, and M. Naushad, Chem. Eng. J.
169, 38 (2011).
A magnetic composite material consisting of zero-valent
iron nano-particles and graphene oxide was synthesized
and used as a catalyst for the degradation of trichloroacetic
acid (TCAA). The results showed that the zero-valent
iron nano-particles were dispersed on graphene oxide
and the specific surface area increased. What’s more,
the GO could serve as a stabilizer to avoid aggre-
gate formation of zero-valent iron nano-particles. Fur-
thermore, NZVI/GO had a good ability to degrade
trichloroacetic acid. Trichloroacetic acid was substantially
completely degraded within 250 min. The final product of
trichloroacetic acid degradation is acetic acid. In addition,
we proposed the mechanism of the degradation of TCCA
by NZVI/GO composite. It was presumed that Fenton
reaction may have occurred to produce hydroxyl radicals
(ꢁOH) and superoxide radicals (ꢁO−2 ) for dechlorination of
TCCA. In summary, NZVI/GO composite material as a
new catalyst has a good development prospects, need to
be further in-depth study.
9. L. Zhou, T. L. Thanh, J. Gong, J. H. Kim, E. J. Kim, and Y. S.
Chang, Chemosphere 104, 155 (2014).
10. H. Ma, Y. P. Huang, M. W. Shen, D. M. Hu, H. Yang, M. F. Zhu,
S. P. Yang, and X. Y. Shi, RSC Adv. 3, 6455 (2013).
11. G. Xu, J. Wang, and M. Lu, Chemosphere 117, 455 (2014).
12. H. I. Gomes, C. Dias-Ferreira, L. M. Ottosen, and A. B. Ribeiro,
J. Colloid Interface Sci. 433, 189 (2014).
13. X. Qiu, Z. Fang, X. Yan, W. Cheng, and K. Lin, Chem. Eng. J.
220, 61 (2013).
14. F. L. Fu, D. D. Dionysiou, and H. Liu, J. Hazard. Mater. 267, 194
(2014).
15. Y. Li, J. Li, and Y. Zhang, J. Hazard. Mater. 227–228, 211 (2012).
16. S. J. Tesh and T. B. Scott, Adv. Mater. 26, 6056 (2014).
17. M. Onyszko, K. Urbas, M. Aleksandrzak, and E. Mijowska, Pol. J.
Chem. Technol. 4, 95 (2015).
18. J. Li, C. L. Chen, R. Zhang, and X. K. Wang, Sci. China Chem.
59, 150 (2016).
Acknowledgment: This work was kindly supported by
National Natural Science Foundation of China (51508254,
41771341), Nature Science Foundation of Gansu Province
of China (1506RJZA216), Opening Project of State Key
Laboratory of High Performance Ceramics and Superfine
Microstructure (SKL201509SIC), Open fund by Jiangsu
19. S. J. Sun, J. Wang, S. Song, K. Y. Sun, J. Li, X. X. Wang, Z. S.
Chen, and X. K. Wang, Sci. China Chem. 60, 415 (2017).
20. X. Y. Zhang, H. X. Zhang, Y. Y. Xiang, S. B. Hao, Y. Y. Zhang, R. N.
Guo, X. W. Cheng, M. Z. Xie, Q. F. Cheng, and B. Li, J. Hazard.
Mater. 342, 353 (2018).
21. H. K. Boparai, M. Joseph, and D. M. O’Carroll, J. Hazard. Mater.
186, 458 (2011).
IP: 185.13.33.15 On: Mon, 17 Sep 2018 15:06:44
Engineering Technology Research Center of Environmen-
Copyright: American Scientific Publishers
tal Cleaning Materials (KFK1502), A Project Funded by
the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD) and Key Laboratory
of Comprehensive and Highly Efficient Utilization of Salt
Lake Resources, Qinghai Institute of Salt Lakes, Chinese
Academy of Sciences.
22. J. T. Nurmi, P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette,
Delivered by Ingenta
K. Pecher, C. Wang, J. C. Linehan, D. W. Matson, R. Lee Penn, and
M. D. Driessen, Environ. Sci. Technol. 39, 1221 (2005).
23. Y. C. Zhao, L. J. Huang, Y. X. Wang, J. G. Tang, Y. Wang, J. X. Liu,
L. A. Belfiore, and M. J. Kipper, J. Alloys Compd. 687, 95 (2016).
24. Z. Mohammadi and M. H. Entezari, Ultrason. Sonochem. 1, 44
(2018).
25. A. A. Karamani, A. P. Douvalis, and C. D. Stalikas, J. Chromatogr. A
1271, 1 (2013).
26. M. Gotic´ and S. Music´Mossbauer, J. Mol. Struct. 834–836, 445
(2007).
27. C. Lu, Y. L. Chung, and K. F. Chang, Water Res. 39, 1183
(2005).
References and Notes
1. D. A. Ellis, M. L. Hanson, P. K. Sibley, T. Shahid, N. A. Fineberg,
K. R. Solomon, D. C. G. Muir, and S. A. Mabury, Chemosphere
42, 309 (2001).
2. M. Berg, S. R. Müller, J. Mühlemann, A. Wiedmer, and R. P.
Schwarzenbach, Environ. Sci. Technol. 34, 2675 (2000).
3. M. J. Cardador and M. Gallego, Environ. Sci. Technol. 45, 5783
(2011).
28. D. Shao, J. Hu, C. Chen, G. Sheng, X. Ren, and X. Wang, J. Phys.
Chem. C 114, 21524 (2010).
29. Y. B. Sun, C. C. Ding, W. C. Cheng, and X. K. Wang, J. Hazard.
Mater. 280, 399 (2014).
Received: 15 December 2017. Accepted: 22 March 2018.
J. Nanosci. Nanotechnol. 18, 8252–8257, 2018
8257