Inorganic Chemistry
Article
(
17) (a) Dehaen, G.; Verwilst, P.; Eliseeva, S. V.; Laurent, S.; Van
P.; Piguet, C. The first enantiomerically pure helical noncovalent
tripod for assembling nine-coordinate lanthanide(III) podates. Inorg.
Chem. 2004, 43, 1840−1849.
der Elst, L.; Muller, R. N.; De Borggraeve, W. M.; Binnemans, K.;
Parac-Vogt, T. N. A Heterobimetallic Ruthenium-Gadolinium
Complex as a Potential Agent for Bimodal Imaging. Inorg. Chem.
(27) Piguet, C.; Bunzli, J.-C. G.; Bernardinelli, G.; Hopfgartner, G.;
̈
2
011, 50, 10005−10014. (b) Li, H.; Xie, C.; Lan, R.; Zha, S.; Chan,
C.-F.; Wong, W.-Y.; Ho, K.-L.; Chan, B. D.; Luo, Y.; Zhang, J.-X.;
Law, G.-L.; Tai, W. C. S.; Bunzli, J.-C. G.; Wong, K.-L. A Smart
Petoud, S.; Schaad, O. Lanthanide Podates with Predetermined
Structural and Photophysical Properties: Strongly Luminescent Self-
Assembled Heterodinuclear d-f Complexes with a Segmental Ligand
Containing Heterocyclic Imines and Carboxamide Binding Units. J.
Am. Chem. Soc. 1996, 118, 6681−6697.
̈
Europium-Ruthenium Complex as Anticancer Prodrug: Controllable
Drug Release and Real-Time Monitoring under Different Light
Excitations. J. Med. Chem. 2017, 60, 8923−8932.
(28) (a) Cantuel, M.; Bernardinelli, G.; Muller, G.; Riehl, J. P.;
Piguet, C. The First Enantiomerically Pure Helical Noncovalent
Tripod for Assembling Nine-coordinate Lanthanide(III) Podates.
Inorg. Chem. 2004, 43, 1840−1849. (b) Torelli, S.; Imbert, D.;
(
18) (a) Henderson, B.; Imbush, G. F. Optical Spectroscopy of
Inorganic Solids; Clarendon Press: Oxford, 1989. (b) Blasse, G.;
Gramaier, B. C. Luminescent Materials; Springer-Verlag: Berlin, 1994.
(
19) Fo
̈
rster, T. Intermolecular Energy Migration and Fluorescence.
Cantuel, M.; Bernardinelli, G.; Delahaye, S.; Hauser, A.; Bunzli, J.-C.
̈
Ann. Phys. 1948, 437 (2), 55−75. (b) Dexter, D. L. A Theory of
G.; Piguet, C. Tuning the Decay Time of Lanthanide-Based Near
Infrared Luminescence from Micro- to Milliseconds through d-f
Energy Transfer in Discrete Heterobimetallic Complexes. Chem. - Eur.
J. 2005, 11, 3228−3242.
Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836−850.
(
c) Forster, T. 10th Spiers Memorial Lecture. Transfer Mechanisms
̈
of Electronic Excitation. Discuss. Faraday Soc. 1959, 27, 7−17.
20) (a) Inokuti, M.; Hirayama, F. Influence of Energy Transfer by
the Exchange Mechanism on Donor Luminescence. J. Chem. Phys.
(
(29) SHAPE is a free software developed by Llunell, M.; Casanova,
Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg.
Chem. 1998, 37, 5575−5582. (b) Alvarez, S.; Avnir, D.; Llunell, M.;
Pinsky, M. Continuous Symmetry Maps and Shape Classification. The
Case of Six-Coordinated Metal Compounds. New J. Chem. 2002, 26,
996−1009. (c) Casanova, D.; Cirera, J. M.; Llunell, M.; Alemany, P.;
Avnir, D.; Alvarez, S. Minimal Distortion Pathways in Polyhedral
Rearrangements. J. Am. Chem. Soc. 2004, 126, 1755−1763. (d) Cirera,
J.; Ruiz, E.; Alvarez, S. Shape and Spin-state in Four-Coordinate
1
965, 43, 1978−1989. (b) Tanner, P. A.; Zhou, L.; Duan, C.; Wong,
K.-L. Misconceptions in Electronic Energy Transfer: Bridging the Gap
Between Chemistry and Physics. Chem. Soc. Rev. 2018, 47, 5234−
5
(
265.
21) (a) Shepherd, H. J.; Quintero, C. M.; Molnar, G.; Salmon, L.;
Bousseksou, A. Luminescent Spin-Crossover Materials. In Spin-
Crossover Materials: Properties and Applications; Halcrow, M. A., Ed.;
John Wiley & Sons, Ltd: Chichester, 2013; Vol. 13, pp 347−373.
b) Senthil Kumar, K.; Ruben, M. Emerging Trends in Spin-crossover
SCO) Based Functional Materials and Devices. Coord. Chem. Rev.
(
(
6
Transition-Metal Complexes: The Case of the d Configuration.
2
017, 346, 176−205. (c) Benaicha, B.; Van Do, K.; Yangui, A.; Pittala,
Chem. - Eur. J. 2006, 12, 3162−3167.
N.; Lusson, A.; Sy, M.; Bouchez, G.; Fourati, H.; Gomez-Garcia, C. J.;
Triki, S.; Boukheddaden, K. Interplay Between Spin-Crossover and
Luminescence in a Multifunctional Single Crystal Iron(II) Complex:
Towards a New Generation of Molecular Sensor. Chem. Sci. 2019, 10,
(30) Phan, H.; Hrudka, J. J.; Igimbayeva, D.; Lawson Daku, L. M.;
Shatruk, M. A Simple Approach for Predicting the Spin-state of
Homoleptic Fe(II) Tris-di-imine Complexes. J. Am. Chem. Soc. 2017,
139, 6437−6447.
6
(
791−6798.
22) (a) Gu
Phenomena in Fe(II) Complexes. Chem. Soc. Rev. 2000, 29, 419−427.
b) Halcrow, M. A. The Spin-States and Spin Transitions of
(31) (a) Kotani, M. On the Magnetic Moment of Complex Ions. J.
Phys. Soc. Jpn. 1949, 4, 293−297. (b) Figgis, B. N. Magnetic
Properties of Spin-Free Transition Series Complexes. Nature 1958,
182, 1568−1570.
(32) Boca, R. Zero-field Splitting in Metal Complexes. Coord. Chem.
Rev. 2004, 248, 757−815.
(33) Pollnau, M.; Gamelin, D. R.; Luthi, S. R.; Gudel, H. U.; Hehlen,
̈ ̈
M. P. Power Dependence of Upconversion Luminescence in
Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B: Condens.
Matter Mater. Phys. 2000, 61, 3337−3346.
̈
tlich, P.; Garcia, Y.; Goodwin, H. A. Spin-crossover
(
Mononuclear Iron(II) Complexes of Nitrogen-Donor Ligands.
Polyhedron 2007, 26, 3523−3576. (c) Scott, H. S.; Staniland, R.
W.; Kruger, P. E. Spin-Crossover in Homoleptic Fe(II) Imidazoly-
limine Complexes. Coord. Chem. Rev. 2018, 362, 24−43.
(
23) Tovee, C. A.; Kilner, C. A.; Thomas, J. A.; Halcrow, M. A. Co-
Crystallising Two Functional Complex Molecules in a Terpyridine
er,
Embrace Lattice. CrystEngComm 2009, 11, 2069−2077. (b) Schaf
̈
(34) (a) Einstein, A. Zur Quantentheorie der Strahlung. Phys.
Zeitschrifts 1917, 18, 121−128. (b) Strickler, S.; Berg, S. J.
Relationship between Absorption Intensity and Fluorescence Lifetime
of Molecules. J. Chem. Phys. 1962, 37, 814−822. (c) Birks, J. B.;
Dyson, D. J. The Relations between the Fluorescence and Absorption
Properties of Organic Molecules. R. London Soc. Ser. A 1963, 275,
135−148.
B.; Bauer, T.; Faus, I.; Wolny, J. A.; Dahms, F.; Fuhr, O.; Lebedkin, S.;
Wille, H.-C.; Schlage, K.; Chevalier, K.; Rupp, F.; Diller, R.;
Schu
Spin-crossover Complex. Dalton Trans. 2017, 46, 2289−2302.
24) (a) Piguet, C.; Rivara-Minten, E.; Hopfgartner, G.; Bunzli, J.-C.
̈
nemann, V.; Kappes, M. M.; Ruben, M. A Luminescent Pt Fe
2
(
̈
G. Molecular Magnetism and Fe(II) Spin-State Equilibrium as
Structural Probe in Heterodinuclear d-f Complexes. Helv. Chim.
Acta 1995, 78, 1651−1672. (b) Piguet, C.; Rivara-Minten, E.;
(35) Reinhard, C.; Gu
copy of Na [Ln(dpa) ]]13H O with Ln = Er, Tm, Yb. Inorg. Chem.
̈
del, H. U. High-Resolution Optical Spectros-
3
3
2
Bernardinelli, G.; Bu
̈
nzli, J.-C. G.; Hopfgartner, G. Non-Covalent
2002, 41, 1048−1055.
(36) (a) Bunzli, J.-C. G. In Lanthanide Probes in Life, Chemical and
Earth Sciences, Theory and Practice; Bunzli, J.-C. G., Choppin, G. R.,
Eds.; Elsevier: Amsterdam, 1989; Vol. 7, pp 219−294.
(37) Piguet, C.; Bunzli, J.-C. G. Self-Assembled Lanthanide
Helicates: From Basic Thermodynamics to Applications. In Handbook
on the Physics and Chemistry of Rare Earths; Bunzli, J.-C. G., Pecharsky,
Lanthanide Podates with Predetermined Physicochemical Properties:
Iron(II) Spin-State Equilibria in Self-Assembled Heterodinuclear d-f
Supramolecular Complexes. J. Chem. Soc., Dalton Trans. 1997, 421−
̈
̈
433. (c) Suleimanov, I.; Kraieva, O.; Molnar, G.; Salmon, L.;
̈
Bousseksou, A. Enhanced Luminescence Stability with a Tb-Spin-
crossover Nanocomposite for Spin-state Monitoring. Chem. Commun.
̈
2
015, 51, 15098−15101.
25) Spin-Crossover Materials: Properties and Applications; Halcrow,
M. A., Ed.; John Wiley & Sons, Ltd: Chichester, 2013; Vol. 13, pp
47−373.
26) (a) Lathion, T.; Guenee, L.; Besnard, C.; Bousseksou, A.;
́ ́
V. K., Eds.; Elsevier Science: Amsterdam, 2010; Vol. 40, pp 301−553.
(38) (a) Schenker, S.; Stein, P. C.; Wolny, J. A.; Brady, C.;
McGarvey, J. J.; Toftlund, H.; Hauser, A. Biphasic Behavior of the
High-Spin/Low-Spin Relaxation of [Fe(btpa)](PF6)2 in Solution-
(btpa)N, N, N′, N′-Tetrakis(2-pyridylmethyl)-6, 6′-bis-
(aminomethyl)-2, 2′-bipyridine). Inorg. Chem. 2001, 40, 134−139.
(b) Brady, C.; Callaghan, P. L.; Ciunik, Z.; Coates, C. G.; Dossing, A.;
Hazell, A.; McGarvey, J. J.; Schenker, S.; Toftlund, H.; Trautwein, A.
(
3
(
Piguet, C. Deciphering the Influence of Meridional versus Facial
Isomers in Spin-crossover Complexes. Chem. - Eur. J. 2018, 24,
16873−16888. (b) Cantuel, M.; Bernardinelli, G.; Muller, G.; Riehl, J.
L
Inorg. Chem. XXXX, XXX, XXX−XXX